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Preliminaries

�e book and the package

�is book explains how to use the nmof package.�ere are three parts: (i) Tu-

torials, (ii) Function Reference and (iii) Case Studies and Examples. Some of

the examples are purely pedagogical; others will, I hope, be useful as refer-

ences or recipes for actual applications, giving the manual a ‘cookbook’ char-

acter.

�e book is still a dra�: Comments, corrections and suggestions are very

welcome.

I refer to both Gilli, Maringer, and Schumann (2011) and Gilli, Maringer, and

Schumann (2019) as gms. (In fact, all the R code examples of the first edition

work with the current package version.) When I use the abbreviation nmof, I

mean the R package of that name. �e latest version of the package is always

available from

http://enricoschumann.net/R/packages/NMOF .

�e stable version of the package is available from cran. �at version is up-

dated once or twice per year. �e Appendix of this book describes how to

obtain and install the package.

�e book does not explain how particular optimisation methods work, and

neither does it discuss the actual practice of financial optimisation; for this

you may want to consult gms. (�is is also the reason why few examples in

this book use real data.† †Using artificial data has its
advantages: we can scale
datasets, e.g. use more assets
or more ‘observations’. And in
any case, many useful and
instructive results can already
be illustrated with artificial
data.

) To put it more clearly: this book is about solving op-

timisation models, not about solving actual problems. Models should never be

confused with problems; but models can be useful for solving problems. �is

distinction is not pedantic and, unfortunately, it appears not to be obvious.

See Chapter 1 of gms, or Gilli and Schumann (2010).

�e book is wri�en with Sweave (Leisch, 2002). It also makes use of the

weaver package (Falcon, 2015). �e tangled code is at

http://enricoschumann.net/files/NMOFman.R

�e latest version of this book can be obtained from

http://enricoschumann.net/NMOF .

So, good luck, and, as the Perl folks might say, have the approriate amount of

fun.
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1. Choosing few from many –

selecting a subset

All chapterswill be self-contained and start with a cleanworkspace.We a�ach

the package and we set a seed so to make the computations in this chapter

reproducible.

Code examples will always be
typeset like this: in a
typewriter font, with the
leading > representing R’s
input prompt.

> library("NMOF")

> set.seed(123321)

1.1. �e problem

Suppose we were confronted with this conceptually simple problem:† †The problem is not as
artificial as it might sound. A
variant of it served to
demonstrate that computing
correlation to many digits is a
waste. The original problem
was: By removing up to
5 observations, out of
about 250, how much can you
increase the correlation
between two series? How
much can you decrease it?

we are

given two ordered lists 0 and 1 that comprise random variates. Since this

tutorial (and the whole book) is about using R, we can as well use correct

terms, so we will speak of atomic vectors 0 and 1. Each vector has a length

of 100. If you like to think in financial terms, then suppose that 0 and 1 are

return series.

We collect both vectors in a matrix 01 of size 100 × 2. (It is more customary

to use a single uppercase le�er, such as �, to name a matrix; in mathematical

notation, 01 might otherwise be mistaken for the product of 0 and 1. To avoid

confusion, I shall from now on typeset ab in a typewriter font.)

�e aim is to divide the rows of ab into two subsets in such a way that the

correlation between the two columns is high in one subset and low in the

other subset. Restrictions: (i) all data points must be used and (ii) a subset

must comprise no fewer than 20 data points.

Tomake the idea clear, we create an example dataset and plot it. We define the

number of rows in the dataset through a variable nrows; the minimum-row

restriction is stored in minrows.

> nrows <- 100L

> minrows <- 20L

Note that I have added an L to the number. �at is an indication for R that the

number is an integer. (It is not necessary to do that; but it makes clearer that

nrows is supposed to hold a whole number.)

11



For the example, the columns of ab should be correlated. First, we define

a correlation rho and create a correlation matrix C. Actually, such a matrix

construction is so common that we put it into a function const cor.

> const_cor <- function(rho, n) {

C <- array(rho, dim = c(n, n))

diag(C) <- 1

C

}

> C <- const_cor(rho = 0.6, 2L)

Next, we create ab. (See Chapter 7 of gms for how to use the Cholesky fac-

torisation to induce correlation into a random sample.)

R’s output will always be
typeset in a typewriter font
with a grey box around it.

> ab <- array(rnorm( nrows * 2L),

dim = c(nrows, 2L)) %*% chol(C)

> colnames(ab) <- c("a", "b")

> head(ab, 5)

a b

[1,] 0.796 0.759

[2,] 0.967 1.059

[3,] 0.540 0.950

[4,] 1.288 -0.794

[5,] -1.277 -1.279

Let us look at the data.

a
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b

One possible solution is to put the first 50 rows into subset 1 and the remaining

rows into subset 2. �is is probably a bad solution, but it does not violate the

restrictions: we have used all rows and there are more than 20 data points in

each subset.

We add the solution to the plot.�e le� panel shows all data points. Dark grey

represents subset 1, which is also plo�ed in the middle figure. Light grey is
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used for subset 2, shown on the right. (Since we will later plot other solutions,

we create a function plot subsets for the figure. �e function definition is

omi�ed here, but is available in the source code.)
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To have a more precise measure of the quality of this solution, we compute

the correlations.

> cor(ab[ 1: 50, ])[1,2]

[1] 0.574

> cor(ab[51:100, ])[1,2]

[1] 0.654

�ey do not differ too much: the solution is – as we guessed – not very good.

So let us find be�er solutions.

1.2. Solutions and their quality

Before we do can anything, we need to decide how to represent a solution;† †Actually, not only the
solution but also the data that
are needed to evaluate a
solution. Appropriate data
structures can make quite a
difference when it comes to
performance, but also when it
comes to clarity of the code.

we also need a mechanism for evaluating how good a solution is.

1.2.1. Representing solutions

A solution needs to specify a set of rows in ab. Once we know the rows that

belong to subset 1, we automatically know the rows of subset 2. Hence, we

can store a solution as a logical vector with a length equal to the number of

rows in ab. TRUE indicates subset 1; FALSE indicates subset 2.

�e 50–50 solution, i.e. pu�ing the first 50 rows into subset 1 and the remain-

ing rows into subset 2, could have been created in this way:

> x0 <- rep(c(TRUE, FALSE), each = nrows/2)
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Weuse the symbol x0 for an initial solution. (If nrows is odd, add length.out

= nrows as an argument.)

An alternative starting point could be be a random solution:

> x0 <- runif(nrows) > 0.5

For such a random solution, we need to check the constraints:

> all(table(x0) >= minrows)

[1] TRUE

To extract subset 1 from ab, we just type:

> ab[ x0, ]

For subset 2, we take not subset 1.

> ab[!x0, ]

Now that we have a way to encode solutions, we can compute with them.

1.2.2. Solution quality: the objective function

We need a way to see how good or bad a solution is; that is, we need an

objective function. �e objective function takes as input a solution (and pos-

sibly some other data) and maps that solution into a real number. We use the

convention that we always minimise, so a lower number is be�er.

�e fact that we want to maximise the absolute difference between the corre-

lations is not a problem: we just put aminus in front of the absolute difference.

Clearly, the best possible solution corresponds to a numeric value of -2; the

worst one has a value of 0. We put this computation into the function dcor.

> dcor <- function(x, ab)

-abs(cor(ab[ x, ])[1L, 2L] - cor(ab[!x, ])[1L, 2L])

Now we would like to find a vector x that makes dcor small. We can test the

function with our initial solution.

> x0 <- rep(c(TRUE, FALSE), each = nrows/2)

> dcor( x0, ab)

[1] -0.0803

> dcor(!x0, ab) ## should give the same result

[1] -0.0803
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1.3. Strategy 1: Zero-intelligence solutions

1.3.1. Brute force

Ken�ompson is said to have suggested that ‘When in doubt, use brute force’.

�e corresponding search strategy is to randomly choose subsets. Random

sampling has several advantages. It is simple; it benefits from more com-

puting power; and it can be distributed. But random sampling is also the

least-efficient method we can think of. (�e least-efficient method among the

class of search strategies that really aim to find good solutions. Clearly, if we

wanted to be bad on purpose, we could easily be less efficient.† † The archetypical example of
an perversely-awful algorithm
is probably bogo-sort http://
www.catb.org/jargon/

html/B/bogo-sort.html (as
opposed to bubble sort, which
is merely the generic bad
algorithm).

Let us compute a number of random solutions.We store the objective function

values in a vector OFvalues and the solutions in a list solutions.

First, we create a function that returns a random solution.

> random_x <- function(nrows, min) {

c1 <- sample(min:(nrows - min), 1L) ## cardinality of subset 1

x0 <- logical(nrows)

x0[sample.int(nrows, c1)] <- TRUE

x0

}

We wrap this function in a loop.

> trials <- 1e5

> OFvalues <- numeric(trials)

> solutions <- vector("list", trials)

> for (i in seq_len(trials)) {

x0 <- random_x(nrows, min = minrows)

OFvalues[i] <- dcor(x0, ab)

solutions[[i]] <- x0

}

We can summarise the results.

> summary(OFvalues)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.751 -0.142 -0.083 -0.099 -0.039 0.000

Exercise 1.1 Rewrite the sampling procedure so that no loop is required; start

by vectorising random x. Measure the performance difference.

�e best solution is the one with the lowest objective function value.
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> xbest <- which.min(OFvalues)

> OFvalues[xbest]

[1] -0.751

�us, the greatest absolute difference between the correlations in the subsets

is -0.751. �e corresponding solution is stored in solutions[[xbest]]. We

store this solution as variable xRandom so that we can later compare it with

other solutions.

> xRandom <- solutions[[xbest]]

(�ere is no need to store the corresponding objective-function value: we can

always recover it with dcor(xRandom, ab).)

1.3.2. Grid Search

An alternative type of brute force is a grid search. For this particular problem,

a grid search is not appropriate. See Chapter 2 for an example.

1.4. Strategy 2: A constructive solution

For the given problem, we know 0 and 1 are roughly zero-mean vectors (we

know that because we created them so). We can divide them into two subsets

like this: those data points 8 for which 0818 is smaller than zero go into one

subset, and those for which 0818 is greater than zero go into the other.

> subset1 <- ab[ ,1L] * ab[ ,2L] > 0

> subset2 <- ab[ ,1L] * ab[ ,2L] <= 0

To make clear why such a solution strategy is reasonable, we can look at the

corresponding plot.

a

−4 −2 0 2

−4

−2

0

2

b

a

−4 −2 0 2

a

−4 −2 0 2

Note that this is not a general strategy. It only works for this specific problem,

and there is no guarantee that the constraints are satisfied. But nevertheless,

16



for many problems we can use knowledge about the problem to come up with

good solutions. For a practical financial
example of a constructive
strategy, see Schumann
(2013).

Such a solution strategy is called constructive since we build

– we construct – one single solution. Once we have this solution, we are done.

But back to our example.

> dcor(subset1, ab)

[1] -1.39

�at’s not bad – definitely be�er than random. But are the constraints vio-

lated?

> sum(subset1)

[1] 70

> sum(subset2)

[1] 30

For the chosen seed for the random-number generator, we were lucky. But

suppose the solution had violated the restrictions. A variation of the con-

struction mechanism is to sort the rows of ab by the size of 0818 .

> cr <- order(ab[ ,1L] * ab[ ,2L])

> OFvalues <- numeric(nrows)

> for (i in minrows:(nrows - minrows)) {

x0 <- logical(nrows)

x0[cr[seq_len(i)]] <- TRUE

OFvalues[i] <- dcor(x0, ab)

}

Now we can check the minimum of OFvalues.

> cutoff <- which.min(OFvalues)

> subset1 <- logical(nrows)

> subset1[cr[seq_len(nrows) <= cutoff]] <- TRUE

> subset2 <- !subset1

> dcor(subset1, ab)

[1] -1.42

For this particular dataset, that solution is even slightly be�er. We store the

solution in the vector xConstr so that we can also compare this solutions

with others.

> xConstr <- subset1
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1.5. Strategy 3: A Greedy Search

Now we move to a fundamental strategy of numerical optimisation: we take

a given solution and try to improve it iteratively.

Define a single change in a solution as amove inwhich one data point changes

its subset, i.e., we pick one row and assign it to the other subset. �ere can

be at most 100 such moves; there may be fewer, namely if a constraint is

binding. We will call a solution created by such a move a neighbour to the

original solution.

TRUE FALSE FALSE FALSE FALSE TRUE ... ## original solution

TRUE FALSE TRUE FALSE FALSE TRUE ... ## neighbour solution

�e strategy we will test in this section is called a Greedy Search and it works

as follows. Start with a random solution and call it the current solution. Look

at all its neighbours computed through single changes and compute their ob-

jective function values. Select the best neighbour; if that best neighbour is

be�er than the current solution, make it the current solution.

If you have found a be�er solution in that way (ie, if we replaced the current

solution), start again: look at all the neighbours of this new current solution,

and so on. Repeat until there is no be�er solution.

We implement this approach in the function greedy. (Note that we could

also write a more generic function for Greedy Search, but only at the price of

making the function less understandable.)

> greedy <- function(fun, x0, ab, n, nmin, maxit = 1000L) {

done <- FALSE

xbest <- xc <- x0

xbestF <- xcF <- fun(xbest, ab)

ic <- 0

while (!done) {

if (ic > maxit)

break

else

ic <- ic + 1L

done <- TRUE

xc <- xbest

for (i in seq_len(n)) {

## create a new solution

xn <- xc

xn[i] <- !xn[i]

## check constraints

18



sxn <- sum(xn)

enough <- sxn >= nmin

notTooMany <- sxn <= n - nmin

if (enough && notTooMany) {

xnF <- fun(xn, ab)

if (xnF < xbestF) {

xbest <- xn

xbestF <- xnF

done <- FALSE

}

}

}

}

list(xbest = xbest, OFvalue = xbestF, ic = ic)

}

greedy takes several arguments: an objective function fun, an initial solution

x0 and the data. �e search essentially is a while loop; thus, we also pass a

number maxit that breaks the computation a�er amaximumnumber of steps.

> x0 <- random_x(nrows = nrows, min = minrows)

> result <- greedy(fun = dcor, x0 = x0, ab = ab,

n = nrows, nmin = minrows, maxit = 1000L)

> xGreedy <- result$xbest

> dcor(x0, ab)

[1] -0.2

> dcor(xGreedy, ab)

[1] -1.54

> result$OFvalue

[1] -1.54

�e function also returns number of moves it has made.

> result$ic

[1] 70
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A plot of the resulting split.
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Seeing this result should immediately raise a question: if we choose a different

starting value, do we get a different result? Let us try 1000 randomly-chosen

starting values.

> trials <- 1000L

> OFvalues <- numeric(trials)

> solutions <- vector("list", trials)

> moves <- numeric(trials)

> for (i in seq_len(trials)) {

x0 <- random_x(nrows = nrows, min = minrows)

result <- greedy(fun = dcor, x0 = x0, ab = ab,

n = nrows, nmin = minrows, maxit = 1000L)

OFvalues[i] <- result$OFvalue

solutions[[i]] <- result$xbest

moves[i] <- result$ic

}

�e results. Yes, the starting value ma�ers.

> summary(OFvalues)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.62 -1.57 -1.55 -1.55 -1.54 -1.43

−2.0 −1.8 −1.6 −1.4 −1.2 −1.0

0.0

0.2

0.4

0.6

0.8

1.0
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It should not come as a surprise that these results are much be�er than the

random solutions provided before.We have usedmuchmore knowledge about

the problem, and the computation is actually quite expensive. We can check

how many moves the algorithm made before it stopped.

> summary(moves)

Min. 1st Qu. Median Mean 3rd Qu. Max.

21.0 34.0 44.0 45.5 56.0 78.0

Since we test 100 neighbours in each iteration, one run of greedy creates and

evaluates on average 4400 solutions.

> ## xbest <- which.min(OFvalues)

> ## OFvalues[xbest]

> ## xGreedy <- solutions[[xbest]]

1.6. Strategy 4: Local Search

Nowwe are going to move to a much simpler strategy, Local Search. See gms,

Chapter 11. As we did for the greedy search, we start a Local Search with a

random solution. �en we create a neighbour, but this time we do not use

any knowledge about the particular problem; rather, we change the solution

randomly: pick one row at random and assign it to the other subset.

We will not implement Local Search, but use the function LSopt provided by

the nmof package.

We first collect all data in a list which we call Data. �at way we keep all

pieces of information in one place; later on, we will pass Data to functions.

As an aside: this collecting-all-in-a-list makes it less likely to forget to explic-

itly pass some objects. If we did so, Local Search would still be able to use

such objects: the functions that require these objects – for instance, the ob-

jective function – were defined at the top-level, as are the objects. But this

is bad practice, which will not work, for instance, with functions defined in

packages, and it will also get us into trouble whenwe distribute computations.

If you do not want to pass arguments to functions, see the appendix of this

chapter for an alternative way, using closures.

> Data <- list(ab = ab, nrows = nrows, nmin = minrows)

Recall that nrowswas the number of rows in ab; the variable nmin stores the

minimum number of rows per subset. We start with a random initial solution.
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> x0 <- random_x(nrows = nrows, min = minrows)

We define a neighbourhood function that chooses one data point randomly,

then reassigns it to the other subset. Since we use a logical vector to represent

a solution, we only need to switch the chosen elements, using the !-operator.

> neighbour <- function(xc, Data) {

xn <- xc

p <- sample.int(Data$nrows, size = 1L)

xn[p] <- !xn[p]

sxn <- sum(xn)

enough <- sxn >= Data$nmin

notTooMany <- sxn <= (Data$nrows - Data$nmin)

if (enough && notTooMany)

xn

else

xc

}

�e function also checks the constraints. If a constraint is violated, we reject

the new solution and keep the old one. (See gms, Section 12.5, for a general

discussion of constraint handling.)

As a check: if we compare the neighbour solution with the original solution,

they should only differ in one place, so an element-wise comparison should

yield a single FALSE and = − 1 TRUE values:

> table(x0 == neighbour(x0, Data))

FALSE TRUE

1 99

We rewrite the objective function since now we pass Data.

> dcor <- function(x, Data)

-abs(cor(Data$ab[x, ])[1L, 2L] - cor(Data$ab[!x, ])[1L, 2L])

We check the new function.

> dcor(x0, Data)

[1] -0.00107
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> dcor(neighbour(x0, Data), Data)

[1] -0.0181

�ese two functions, dcor and neighbour, is all we need for LSopt. So we

run a Local Search and check the solution.

> algo <- list(nS = 2500L, ## number of steps to make

neighbour = neighbour, ## neighbourhood function

x0 = x0, ## initial solution

printBar = FALSE)

> sol1 <- LSopt(dcor, algo = algo, Data = Data)

Local Search.

Initial solution: -0.00107

Finished.

Best solution overall: -1.53

> sol1$OFvalue

[1] -1.53

> xLS <- sol1$xbest

Recall that the quality (i.e. objective function value) for the solution returned

by the constructive method was -1.423. We plot the results.
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�e result of a single Local Search is random since we have chosen a ran-

dom starting value and the moves that the Local Search takes are random as

well. (Note that both sources of randomness could be eliminated by choosing

a fixed starting solution and defining a neighbourhood function that does not

involve chance. But the point is to show that chance is actually our friend.)

How can we judge the results when it is random? By running a small exper-

iment.

First we create a variation of our random-solution generator that takes no

arguments.
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> random_x_no_par <- function() {

min <- 20

nrows <- 100

c1 <- sample(min:(nrows - min), 1L)

x0 <- logical(nrows)

x0[sample.int(nrows, c1)] <- TRUE

x0

}

�at is useful because the argument x0 that we give to LSopt may also be a

function.

We run LSopt 100 times for two different se�ings. First, we use 5000 steps;

then 10000. For convenience, nmof provides a function restartOpt which

runs these tests and collects the values.

> trials <- 100L

> algo <- list(nS = 5000L, ## number of steps to make

neighbour = neighbour, ## neighbourhood function

x0 = random_x_no_par, ## initial solution

printBar = FALSE,

printDetail = FALSE)

> restarts1 <- restartOpt(LSopt, trials,

OF = dcor, algo = algo, Data,

cl = 4)

> restarts1OFvalues <- sapply(restarts1, `[[`, "OFvalue")

> algo$nS <- 10000L

> restarts2 <- restartOpt(LSopt, trials,

OF = dcor, algo = algo, Data,

cl = 4)

> restarts2OFvalues <- sapply(restarts2, `[[`, "OFvalue")

We can plot the results. �e vertical lines indicates the constructive solution.

Note that there is li�le improvement despite the doubling of the number of

steps nS.

> par(bty = "n", las = 1, mar = c(3, 4, 0, 0), ps = 8, tck = 0.001)

> plot( ecdf(restarts1OFvalues), main = "", ylab = "", xlab = "",

cex = 0.4, pch = 19, col = grey(.2), xlim = c(-2,-1))

> lines(ecdf(restarts2OFvalues),

cex = 0.4, pch = 19, col = grey(.6))

> abline(v = dcor(xConstr, Data))
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Exercise 1.2 Take a randomwalk through your data like in a Local Search, but

accept any new solution; store the best value along the way. Do this 100 times.

What does the distribution of these best values look like?

Now change the acceptance rule: if be�er, always accept. If worse, accept with

probability of 50%. Again, run 100 such experiments.

1.7. Strategy 5: A less-greedy Local Search

Nowwe use�reshold Accepting and Simulated Annealing instead of a Local

Search. We use 10 thresholds.

> x0 <- random_x(nrows = nrows, min = minrows)

> algo$nS <- 5000

> sol1 <- LSopt(dcor, algo = algo, Data = Data)

> sol1$OFvalue

> xLS <- sol1$xbest

> algo$nT <- 10

> algo$nS <- 500

> sol2 <- TAopt(dcor, algo = algo, Data = Data)

> sol2$OFvalue

> xTA <- sol2$xbest

We see that ta finds a be�er solution. Let us look at the solutions that the

algorithms find over time. First lsṪhe dark black line shows the objective

function value of the accepted solutions, which is equivalent, for ls, to the

best solution found. �e grey line shows the proposed solutions.

> par(mfrow = c(1, 1),

bty = "n", las = 1, mar = c(3, 4, 0, 0), ps = 8, tck = 0.001)

> plot(sol1$Fmat[,1], type = "l", col = grey(.6),

ylab = "objective function value", xlab = "iteration", lwd = 0.5)

> lines(sol1$Fmat[,2], type = "l", lwd = 2)
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Here is ta. If you look carefully, you will see that the accepted-solutions’

objective function value is not monotonically decreasing: tamaymake uphill

moves.
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We can tell ta be even more forgiving by changing the parameter q, which is

the size of the initial threshold. A value of 0.9 means that the first threshold

would accept 90% of all changes.

> algo$q <- 0.9

> sol2 <- TAopt(dcor, algo = algo, Data = Data)

> (sol2$OFvalue)

[1] -1.57

> par(mfrow = c(1, 1),

bty = "n", las = 1, mar = c(3, 4, 0, 0), ps = 8, tck = 0.001)

> plot(sol2$Fmat[,1], type = "l", col = grey(.6), lwd = 0.5,

ylab = "objective function value", xlab = "iteration")

> lines(cummin(sol2$Fmat[,2]), type = "l", lwd = 2, col = grey(.2))

> lines(sol2$Fmat[,2], type = "l", lwd = 2)
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We plot the results.
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Just as with LSopt, we should start TAopt several times. Again, we test two

different se�ings for the steps.

> algo$printBar <- FALSE

> algo$printDetail <- FALSE

> restarts3 <- restartOpt(TAopt, trials, OF = dcor, algo = algo, Data, cl = 4)

> restarts3OFvalues <- sapply(restarts3, `[[`, "OFvalue")

> algo$nS <- 1000

> restarts4 <- restartOpt(TAopt, trials, OF = dcor, algo = algo, Data, cl = 4)

> restarts4OFvalues <- sapply(restarts4, `[[`, "OFvalue")

> algo$nS <- 500

> algo$printBar <- FALSE

> algo$printDetail <- FALSE

> restarts5 <- restartOpt(SAopt, trials, OF = dcor, algo = algo, Data, cl = 4)

> restarts5OFvalues <- sapply(restarts5, `[[`, "OFvalue")

> algo$nS <- 1000

> restarts6 <- restartOpt(SAopt, trials, OF = dcor, algo = algo, Data, cl = 4)

> restarts6OFvalues <- sapply(restarts6, `[[`, "OFvalue")

> par(bty = "n", las = 1, mar = c(3, 4, 0, 0), ps = 8, tck = 0.001)

> plot( ecdf(restarts1OFvalues), main = "", ylab = "", xlab = "",
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cex = 0.4, pch = 19, col = grey(.2), xlim = c(-2,-1))

> lines(ecdf(restarts2OFvalues),

cex = 0.4, pch = 19, col = grey(.6))

> lines(ecdf(restarts3OFvalues),

cex = 0.4, pch = 19, col = grey(.2), lty=2)

> lines(ecdf(restarts4OFvalues),

cex = 0.4, pch = 19, col = grey(.6), lty=2)

> lines(ecdf(restarts5OFvalues),

cex = 0.4, pch = 19, col = rgb(0,0,0.8), lty=2)

> lines(ecdf(restarts6OFvalues),

cex = 0.4, pch = 19, col = rgb(0,0,0.5), lty=2)

> abline(v = dcor(xConstr, Data))

−2.0 −1.8 −1.6 −1.4 −1.2 −1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.8. Comparing the results

Random: -0.7508
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Constructive: -1.4228
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�reshold Accepting: -1.5588
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1.A. Passing data via closures

Recall that we defined the neighbour function so that all information other

than the solution was passed via a list Data. Suppose you do not like that: you

want to write n instead of Data$n, and so on. You can do this with closures.

Let us make a simple example. First, as a reminder, the original function.

> neighbour <- function(xc, Data) {

xn <- xc

p <- sample.int(Data$nrows, size = Data$size)

xn[p] <- !xn[p]

sxn <- sum(xn)

enough <- sxn >= Data$nmin

notTooMany <- sxn <= (Data$nrows - Data$nmin)

if (enough && notTooMany)

xn

else

xc

}

�e new function neighbour fun takes as arguments the variables that were

in Data. �e function returns a neighbourhood function.

> neighbour_fun <- function(n, nmin, size) {

force(n)

force(nmin)

function(xc) {

xn <- xc

p <- sample.int(n, size = size)

xn[p] <- !xn[p]

sxn <- sum(xn)

enough <- sxn >= nmin

notTooMany <- sxn <= (n - nmin)

if (enough && notTooMany)

xn

else

xc

}

}

To create a neighbourhood, we call neighbour fun.
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> N <- neighbour_fun(n = 10, nmin = 2, size = 3)

> N

function(xc) {

xn <- xc

p <- sample.int(n, size = size)

xn[p] <- !xn[p]

sxn <- sum(xn)

enough <- sxn >= nmin

notTooMany <- sxn <= (n - nmin)

if (enough && notTooMany)

xn

else

xc

}

<environment: 0x55b8713a0668>

�e function compareLogicals is described in Section 9.2.1.

> x0 <- rep(c(TRUE, FALSE), each = 5L)

> Data <- list(nrows = 10, nmin = 2, size = 1)

> compareLogicals(x0, neighbour(x0, Data))

1111100000

1011100000

^

> N <- neighbour_fun(n = 10, nmin = 2, size = 1)

> compareLogicals(x0, N(x0))

1111100000

0111100000

^

> compareLogicals(x0, N(x0))

1111100000

1111000000

^

> compareLogicals(x0, N(x0))
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1111100000

1111100010

^

. . . and:

> N <- neighbour_fun(n = 10, nmin = 2, size = 3)

> compareLogicals(x0, N(x0))

1111100000

1111101110

^^^

> compareLogicals(x0, N(x0))

1111100000

1111011000

^^^

> compareLogicals(x0, N(x0))

1111100000

1100101000

^^ ^
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2. Constrained regression

Again, we set a seed so that you can reproduce the results exactly. We will

use the rbenchmark package (Kusnierczyk, 2010) for timing comparisons.

> library("NMOF")

> library("rbenchmark")

> set.seed(46457)

2.1. �e problem

In this chapter we will see how to compute a constrained regression with

Differential Evolution (DE). More specifically, we will run a regression that

could be used in a style analysis.

Style analysis, described in Sharpe (1992), uses a linear factor model to de-

scribe the returns of a portfolio, with a few constraints added: Sharpe also stipulates that
there is no constant in the
model.

the factors

should be actual asset classes; the factor loadings, which are interpreted as

weights, should sum to 100% and should take on reasonable values. For a typ-

ical mutual fund, for instance, the weights should be nonnegative.

Sharpe uses quadratic programming (qp) to solve his model. But we suspect

that some data points are not really reliable, so we want to run a Least-

Trimmed-Squares (lts) regression. �at is, we want the algorithm to select ℎ

of the = observations, and only for those minimise the squared residuals.

2.2. Least Squares and Least Trimmed Squares

2.2.1. Data, solution representation and objective function

We create a dataset of ? potential regressors and = observations. For this pur-

pose we define the function randomData.

> randomData <- function(p, n, rscale = 0.5) {

X <- array(rnorm(n * p), dim = c(n, p))

k <- sample.int(p, 1L) ## the number of regressors

K <- sample.int(p, k) ## the set of regressors

betatrue <- numeric(p)

betatrue[K] <- rnorm(k) ## the true coefficients
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y <- X %*% betatrue + rnorm(n)*rscale

list(X = X, y = y, betatrue = betatrue,

K = K, n = n, p = p)

}

Adataset comprises amatrix Xwhose columns are the regressors and a single-

column matrix y, the regressand.

We start with a modest dataset of = = 60 observations and ? = 5 regressors.

> n <- 60L

> p <- 5L

> rD <- randomData(p, n)

As in Chapter 1, we need to decide how to represent a solution, and we

need a way to evaluate its quality – the objective function. How solutions

are changed is determined by the heuristic we use; Differential Evolution is

essentially defined through these operations. We need, however, to discuss

how to include constraints.

Let us start with how to represent the solution. Since we look for vector of

coefficients, a numeric vector is natural. We create a random solution b0.

> b0 <- rnorm(p)

b0 will probably violate the constraints (non-negativity, likely; summing to

one, definitely), but it is a solution that can be put into an objective function.

Since wewill pass the different pieces of information (the data set, the number

of observations n and so on) to our optimisation function, it will be convenient

to collect them all in a list, which we call Data.

> Data <- list(X = rD$X,

y = rD$y,

p = rD$p,

n = rD$n)

Now that we have some solution, we can evaluate its quality. We will start

with the objective function for a simpler problem: Least Squares. It can be

wri�en like this.

> OFls <- function(b, Data) {

tmp <- Data$y - Data$X %*% b

sum(tmp * tmp)

}

Instead of tmp * tmp we could have wri�en tmp^2, which would not have

been much different. But it makes a difference for higher exponents:
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> tmp <- rnorm(1e4)

> benchmark(tmp * tmp * tmp,

tmp^3,

columns = c("test", "elapsed", "relative"),

replications = 5000, order = "relative")

test elapsed relative

1 tmp * tmp * tmp 0.287 1.00

2 tmp^3 1.556 5.42

�e results are the same, but the computing time differs quite a bit.

> all.equal(tmp * tmp * tmp, tmp^3)

[1] TRUE

We can run Differential Evolution with a randomly-initialised population.

> algo <- list(nG = 200, ## number of generations

nP = 50, ## population size

min = rep(-20, p),

max = rep( 20, p),

printBar = FALSE)

> resDE <- DEopt(OFls, algo = algo, Data = Data)

�e advantage of using Least Squares is that we can compare our results with

those obtained through, for instance, the lm function, or obtained directly

through qr.

> data.frame(QR = qr.solve(Data$X, Data$y),

DE = resDE$xbest)

QR DE

1 1.7902 1.7902

2 -0.4769 -0.4769

3 -0.1943 -0.1943

4 -1.0499 -1.0499

5 -0.0764 -0.0764

In the example above I used 200 generations and a population size of 50. How

did I know that these se�ings are appropriate? In fact, I didn’t. And that posed

no problem: knowing appropriate se�ings is not the goal – we only need to

decide what se�ings to use. For this, we run experiments.

Suppose we leave the population size for now. (A rule of thumb is to use at

least 2–5 times the number of decision variables.)
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> algo <- list(nP = 50,

min = rep(-20, p),

max = rep( 20, p),

printBar = FALSE, printDetail = FALSE)

Now we can run the function restartOpt.

> algo$nG <- 25

> results1 <- restartOpt(DEopt, n = 50, OF = OFls, algo = algo, Data = Data)

> algo$nG <- 50

> results2 <- restartOpt(DEopt, n = 50, OF = OFls, algo = algo, Data = Data)

> algo$nG <- 100

> results3 <- restartOpt(DEopt, n = 50, OF = OFls, algo = algo, Data = Data)

> algo$nG <- 200

> results4 <- restartOpt(DEopt, n = 50, OF = OFls, algo = algo, Data = Data)

We compare 25 with 50 generations.
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And 50 with 100 (note the changed ~-scale).

12.5 13.0 13.5 14.0

0.0

0.2

0.4

0.6

0.8

1.0

And 100 with 200 (note the changed ~-scale).
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We will discuss more diagnostics for DEopt in Section 4.1.

2.2.2. Unconstrained Least Trimmed Squares

We define lts such that the sum of the h smallest squared residuals is min-

imised. �us, we need to add h to Data. �e new objective function OFlts

follows.

> OFlts <- function(b, Data) {

tmp <- Data$y - Data$X %*% b

tmp <- sort(tmp * tmp, partial = Data$h)

sum(tmp[seq_len(Data$h)])

}

For lts, there exists a fast and typically very successful algorithm named

Fastlts (Rousseeuw and Van Driessen, 2005), which is implemented in pack-

age robustbase. We can compare it with our method.

> library("robustbase")

> alpha <- 0.9

> Data <- list(X = rD$X, y = rD$y, p = rD$p, n = rD$n,

h = h.alpha.n(alpha, n = n, p = p))

We use the function h.alpha.n to determine h (but we could also have set it

to ceiling(alpha*n), say).

> resDE <- DEopt(OFlts, algo = algo, Data = Data)

> resLTS <- ltsReg(rD$y ~ -1 + rD$X, alpha = alpha,

use.correction = FALSE)

> data.frame(fastLTS = resLTS$raw.coefficients,

DE = resDE$xbest)

fastLTS DE

rD$X1 1.7689 1.7689
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rD$X2 -0.3984 -0.3984

rD$X3 -0.1764 -0.1764

rD$X4 -1.1280 -1.1280

rD$X5 -0.0309 -0.0309

We can also compare the objective function values.

> cLTS <- resLTS$raw.coefficients

> cat("LTS")

LTS

> sum(sort((Data$X %*%cLTS - Data$y)^2)[1:Data$h])

[1] 5.89

> cDE <- resDE$xbest

> cat("DEopt")

DEopt

> sum(sort((Data$X %*%cDE - Data$y)^2)[1:Data$h])

[1] 5.89

2.3. Constraints

2.3.1. Repairing or penalising

�ere are two constraints: have the weights sum to one, and no weights

should be negative. b0 violates both.

> any(b0 < 0)

[1] TRUE

> sum(b0)

[1] 0.456
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�ere are a number of ways to heal these violations; see also Section 3.1.2. In

this tutorial we will discuss two possibilities: repairing a solutions, or using a

penalty function.

A repair function is straightforward to write.

> repair <- function(b, Data) {

b <- abs(b)

b/sum(b)

}

�is function first reflects negative values to their positive counterparts; it

then divides all coefficients by the sum of all coefficients. �ere are many

variations to this, but for now, we stick with this simple solution.

> b1 <- repair(b0, Data)

> all(b1 >= 0) ## should be TRUE

[1] TRUE

> sum(b1) ## should be 1

[1] 1

An alternative is a penalty function. Whenever a solution violates a con-

straint, we add a positive number to its objective function value. Since we

minimise, this will make the solution look bad. Note that in this way we

change the model to solve into one of unconstrained optimisation.

Capturing negative coeffients is simple:

> b0

[1] -1.438 -0.680 0.437 0.269 1.868

> b0 - abs(b0)

[1] -2.88 -1.36 0.00 0.00 0.00

> sum(b0)

[1] 0.456

Why not write b0[b0 < 0]? Because the b - abs(b) is slightly more effi-

cient. (�e more elements b has, the bigger the advantage.)
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> b <- rnorm(1000L)

> benchmark(sum(b - abs(b))/2,

sum(b[b < 0]),

columns = c("test", "elapsed", "relative"),

replications = 1e4, order = "relative")

test elapsed relative

1 sum(b - abs(b))/2 0.068 1.00

2 sum(b[b < 0]) 0.090 1.32

> all.equal(sum(b - abs(b))/2, sum(b[b < 0]))

[1] TRUE

Similarly we can check whether the sum of the coefficients is one.

> abs(sum(b0) - 1)

[1] 0.544

We put these computations into a function. Each violation is weighted by a

weight pw.

> Data$pw1 <- 500

> Data$pw2 <- 500

> penalty <- function(b, Data)

Data$pw1 * -sum(b - abs(b)) + Data$pw2 * abs(sum(b) - 1)

> penalty(b0, Data)

[1] 2389

> penalty(b1, Data) ## recall that b1 was 'repaired'

[1] 5.55e-14

Let’s try. First, the unconstrained case.

> algo <- list(nG = 500, nP = 100,

min = rep(-20, p), max = rep( 20, p),

printBar = FALSE)

> resDE <- DEopt(OFls, algo = algo, Data = Data)

Differential Evolution.

Best solution has objective function value 12.2 ;

standard deviation of OF in final population is 1.29e-15 .
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We should not be surprised that the constraints are violated.

> round(resDE$xbest, 5)

[1] 1.7902 -0.4769 -0.1943 -1.0499 -0.0764

> resDE$OFvalue

[1] 12.2

> sum(resDE$xbest)

[1] -0.00728

> all(resDE$xbest >= 0)

[1] FALSE

Now we use the repair function.

> algo$repair <- repair

> resDE <- DEopt(OFls, algo = algo, Data = Data)

Differential Evolution.

Best solution has objective function value 168 ;

standard deviation of OF in final population is 0 .

> round(resDE$xbest,5)

[1] 1 0 0 0 0

> resDE$OFvalue

[1] 168

> sum(resDE$xbest)

[1] 1

> all(resDE$xbest >= 0)

[1] TRUE
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Now we use the penalty function.

> algo$repair <- NULL

> algo$pen <- penalty

> resDE <- DEopt(OFls, algo = algo, Data = Data)

Differential Evolution.

Best solution has objective function value 168 ;

standard deviation of OF in final population is 5.07e-11 .

> round(resDE$xbest,5)

[1] 1 0 0 0 0

> resDE$OFvalue

[1] 168

> sum(resDE$xbest)

[1] 1

> all(resDE$xbest >= 0)

[1] FALSE

Exercise 2.1 �e non-negativity constraint is violated. Why? Try to fix it.

2.4. Doing it the vectorised way

�epopulation is repaired and evaluated through a loop.While this is natural,

the Rway to do it would be to evaluate all solutions in one step. For instance,

if we take the absolute value of the twenty columns of a matrix, we can more

naturally compute the value for the matrix at once. �is section is going to

discuss how to vectorise the objection function (OF).

Recall that the OF looked like this.

> OFlts

function(b, Data) {

tmp <- Data$y - Data$X %*% b

tmp <- sort(tmp * tmp, partial = Data$h)

sum(tmp[seq_len(Data$h)])

}

<bytecode: 0x55b8738339a8>
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> b0 <- rnorm(p)

> b1 <- rnorm(p)

> P <- cbind(b0 = b0, b1 = b1)

What we first did in the OF is to compute residuals.

> head(Data$y - Data$X %*% b0)

[,1]

[1,] 4.987

[2,] 0.349

[3,] 6.041

[4,] -7.496

[5,] 3.689

[6,] 1.819

> head(Data$y - Data$X %*% b1)

[,1]

[1,] 2.600

[2,] -0.534

[3,] 2.988

[4,] -8.197

[5,] 2.977

[6,] 1.847

> head(drop(Data$y) - Data$X %*% P)

b0 b1

[1,] 4.987 2.600

[2,] 0.349 -0.534

[3,] 6.041 2.988

[4,] -7.496 -8.197

[5,] 3.689 2.977

[6,] 1.819 1.847

Note that we had to drop the dim a�ribute from Data$y, which we did with

the drop function.

Next, we had to square the residuals. Again, there is no need to loop.

> head(Data$y - Data$X %*% b0)^2

[,1]

[1,] 24.870

[2,] 0.122
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[3,] 36.494

[4,] 56.183

[5,] 13.607

[6,] 3.309

> head(Data$y - Data$X %*% b1)^2

[,1]

[1,] 6.758

[2,] 0.285

[3,] 8.930

[4,] 67.197

[5,] 8.864

[6,] 3.410

> head((drop(Data$y) - Data$X %*% P)*(drop(Data$y) - Data$X %*% P))

b0 b1

[1,] 24.870 6.758

[2,] 0.122 0.285

[3,] 36.494 8.930

[4,] 56.183 67.197

[5,] 13.607 8.864

[6,] 3.309 3.410

Here is the new OF.

> OFlts2 <- function(b, Data) {

tmp <- drop(Data$y) - Data$X %*% b

tmp <- tmp * tmp

tmp <- apply(tmp, 2L, sort, partial = Data$h)

.colSums(tmp[seq_len(Data$h), ,drop = FALSE], Data$h, ncol(b))

}

We create a random population.

> nP <- 100

> P <- array(rnorm(p * nP), dim = c(p, nP))

> sol0 <- OFlts2(P, Data)

> sol1 <- numeric(nP)

> benchmark(for (i in seq_len(nP))

sol1[i] <- OFlts(P[ , i, drop = FALSE], Data),

sol2 <- OFlts2(P, Data),

columns = c("test", "elapsed", "relative"),

replications = 100, order = "relative")
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test

2 sol2 <- OFlts2(P, Data)

1 for (i in seq_len(nP)) sol1[i] <- OFlts(P[, i, drop = FALSE], Data)

elapsed relative

2 0.194 1.00

1 0.440 2.27

> all.equal(sol1, sol2)

[1] TRUE

We run DEopt.

> algo$repair <- repair

> algo$pen <- NULL

> algo$loopOF <- TRUE ## loop

> resDE <- DEopt(OFlts, algo = algo, Data = Data)

Differential Evolution.

Best solution has objective function value 101 ;

standard deviation of OF in final population is 0 .

> round(resDE$xbest,5)

[1] 1 0 0 0 0

> algo$loopOF <- FALSE ## vectorised

> resDE <- DEopt(OFlts2, algo = algo, Data = Data)

Differential Evolution.

Best solution has objective function value 101 ;

standard deviation of OF in final population is 0 .

> round(resDE$xbest,5)

[1] 1 0 0 0 0
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3. Optimisation with

single-solution methods

3.1. Heuristics

Numerical optimisation starts with a model, typically stated as

minimise
G

q (G) , (3.1)

in which q is the function that we want to minimise, called the objective

function, and G represents the decision variables. If we wanted to maximise,

we would minimise −q instead. In most models, there are restrictions on how

we may choose G .

Heuristics,† the techniques described in this book, are a class of methods for

solving such optimisation models. † The term heuristics is
actually is in different –
though o�en related –
meanings in different
disciplies. For a brief overview,
see Gilli and Schumann
(2017), on which this section is
based.

We find it helpful to not think in terms of a mathematical description, but

rather to replace q by something like

solutionQuality = function(x, data) .

�at is, we need to be able to program a mapping from a solution to its qual-

ity, given the data. �ere is no need for a closed-form mathematical descrip-

tion of the function.1 Indeed, in many applied disciplines there are no closed-

form objective functions.�e functionq could include an experimental setup,

with G the chosen treatment and q (G) the desirability of its outcome. Or eval-

uating q might require a complicated stochastic simulation, such as an agent-

based model.

A number of requirements describe an optimisation heuristic further (Zanakis

and Evans, 1981, Barr et al., 1995, and Winker and Maringer, 2007, list similar

criteria):

• �e method should give a ‘good’ stochastic approximation of the true

optimum,with ‘goodness’measured in computing time or solution qual-

ity.

• �emethod should be robust whenwe change the model – for instance,

when we modify the objective function or add a constraint – and also

when we increase the problem size. Results should not vary too much

for different parameter se�ings for the heuristic.

1Mathematically a function is nothing but a mapping, so there is no contradiction here. But

when people see q (G) they intuitively o�en think of something like q (G) =
√
G + G2 . We

would prefer they thought of a programme, not a formula.
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• �e technique should be easy to implement.

• Implementation and application of the technique should not require

subjective elements.

Such a definition is not unambiguous, but it is a start. Actually, we think that

users can only gain intuition about heuristics through studying examples –

which we will do in the next section. But for now, we shall go on dwelling on

principles.

In a broad sense, we can differentiate between two classes of heuristics, con-

structive methods and iterative-search methods. In this chapter, we shall con-

centrate on the la�er type, so let us give a quick example for constructive

methods and then not mention them any further. For a constructive method,

an algorithm starts with an empty solution and adds components step-by-

step; the procedure terminates when it has completed one solution. An ex-

ample: a reasonable low-variance equity portfolio of cardinality # can be

constructed by (i) obtaining forecasts for the marginal variances of all eli-

gible assets, (ii) sort the assets by forecast variance and (iii) keep the # as-

sets with the lowest forecast variance in the portfolio (equally-weighted); see

Schumann (2013).

For iterative search methods the algorithm moves from solution to solution,

that is, a complete existing solution is modified to obtain a new solution. Such

a new solution may be quite different from previous ones, as some methods,

such as Genetic Algorithms, create new solutions in a rather discontinuous

ways. But still, a new solution will share characteristics with its predecessor

(if that was not the case, we would be doing random-sampling).

3.1.1. Principles

�e following pseudocode should make the idea of an iterative method more

precise.

1: generate initial solution G c

2: while stopping condition not met do

3: create new solution Gn
= N (G c)

4: if A(q, Gn, G c, . . .) then G c
= Gn

5: end while

6: return G c

In words: we start with a solution G c, typically randomly chosen. �en, in

each iteration, the function N (‘neighbour’) makes a copy of G c and modifies

this copy; thus, we get a new candidate solution Gn. �e function A (‘accept’)

decides whether Gn replaces G c, typically by comparing the objective function

values of the solutions. �e process is repeated until a stopping condition is

satisfied; finally, G c is returned.

To implement such a method, we need to specify

• how we represent a solution G ,
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• how we evaluate a solution (the function q),

• how we change a solution (the function # ),

• how to decide whether to accept a solution (the function �),

• when to stop.

�ese building blocks would still apply to a classical method. For example, for

a gradient-based method G would be a numeric vector; # would evaluate the

gradient at G c and then move minus the gradient with a specified stepsize;

� would evaluate G c and Gn, and replace G c only if Gn is be�er; if not, the

search is stopped.

Heuristics use other, o�en simpler, mechanisms. In fact, two characteristics

will show up in almost all methods. (i) Heuristics will not insist on the best

possible moves. A heuristic may accept a new solution Gn even if it is worse

than the current solution. (ii) Heuristics typically have random elements. For

instance, a heuristic may change G c randomly (instead of locally-optimally

as in a gradient search). �ese characteristics make heuristics inefficient for

well-behaved models. But for difficult models (for instance, such with many

local optima as in Figure �), they enable heuristics to move away from local

optima.2

Let us give a concrete example, namely the problem we already used earlier:

we want to select # assets, equally-weighted, out of a large number of assets,

such that the resulting portfolio has a small variance. We assume that we

have a forecast for the variance–covariance matrix available. �en a simple

method for ge�ing a very good solution to this model is a local search. For a

local search,

• the solution G is a list of the included assets;

• the objective function q is a function that computes the variance fore-

cast for a portfolio G ;

• the function # picks one neighbour by randomly removing one asset

from the portfolio and adding another one;

• the function� comparesq (G c) andq (Gn), and if Gn is not worse, accepts

it;

• the stopping rule is to quit a�er a fixed number of iterations.

Note that local search is still greedy in a sense, since it will not accept a new

solution that is worse than the previous one. �us, if the search arrives at a

solution that is be�er than all its neighbours, it can never move away from it –

2In principle, because of suchmechanisms a heuristic could dri� farther and farther off a good

solution. But practically, that is very unlikely because every heuristic has a bias towards

good solutions. In �reshold Accepting, the method that we describe in Section �, that

bias comes into effect because a be�er solution is always accepted, a worse one only if it is

not too bad. Since we repeat this creating of new candidate solutions thousands of times,

we can be very certain that the scenario of dri�ing-off a good solution does practically not

occur.
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even if this solution is only a local optimum. Heuristic methods that build on

local search thus employ additional strategies for escaping such local optima.

And indeed, with a small – but important – variation we arrive at Simulated

Annealing (Kirkpatrick et al., 1983). We use a different acceptance rule �:

If the new solution is be�er, accept it. If it is worse, do still accept it, but

only with a specific probability. �is probability in turn depends on the new

solution’s quality: the worse it is, the less likely it is the solution is accepted.

Also, the probability of acceptence is typically lower in later iterations (that

is, the algorithm becomes pickier). In many implementations, the probability

at later stages is essentially zero; thus, Simulated Annealing turns into a local

search.

3.1.2. Constraints

Nothing in the pseudocode that we showed above ensures that a constraint on

a solution G is observed. But it is o�en constraints that make models realistic

and difficult. Several strategies exist for including restrictions into heuristics.

�row away

If our model has only few constraints that are not o�en hit, the simplest ap-

proach is to ‘throw away’ infeasible new solutions. �at is, if a neighbour so-

lution violates a constraint, we just select another neighbour. Note that this

means that we include the contraints in the acceptance function �.

Include constraint in N

We can directly use the constraint to create new, feasible solutions. In portfo-

lio selection models we usually have a budget constraint; that is, we require

that all asset weights sum to one. �is constraint can be enforced when we

compute new solutions by increasing some weights and decreasing others

such that the sum of all weight changes is zero.

Transform x

An older but still used idea is to transform variables.�is approach sometimes

works for constraints that require that the elements of G lie in certain ranges;

see the discussion in Powell (1972). For instance, sin(G) will map any real G

to the range [−1, 1]; U (sin(G))2 will give a mapping to [0, U]. But such trans-

formations come with their own problems; see Gill et al. (1986, Section 7.4); in

particular, it may become difficult to change a problem later on or to handle

multiple constraints.
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Repair x

We can introduce mechanisms to correct solutions that violate constraints.

For example, if a solution G holds the portfolio weights, then dividing every

element in G by the sum of the elements of G ensures that all weights sum to

unity.

Penalise x

Finally, we can penalise infeasible solutions. Whenever a constraint is vio-

lated, we add a penalty term to the objective function and so downgrade the

quality of the solution. In essence, we change the problem to an unconstrained

one for which we can use the heuristic. �e penalty is o�en made an increas-

ing function of the magnitude of violation. �us, the algorithm may move

through infeasible areas of the search space, but will have guidance to return

to feasible areas. �e penalty approach is the most generic strategy to in-

clude constraints; it is convenient since the computational architecture needs

hardly be changed. Penalties create so� constraints since the algorithm could

in principle always override a penalty; practically, we can set the penalty so

high that we have hard constraints.

3.1.3. Random solutions

�e most common objection against using heuristics is the fact that, since

heuristics explicitly rely on randommechanisms, their solutions are also ran-

dom.�is randomness, it is argued, makes it difficult to evaluate the quality of

solutions computed by such algorithms. (�e discussion in this section builds

on Gilli et al., 2011.)

Randomness

A naı̈ve approach to solving an optimisation model could be this: randomly

generate a large number of candidate solutions, evaluate all solutions and pick

the best one. �is best solution is our overall solution.

If we repeated the whole procedure a second time, our overall solution would

probably be a different one. �us, the solution G we obtain through our sam-

pling strategy is stochastic.�e difference between our solution and the actual

optimum would be a kind of truncation error, since if we sampled more and

more, we should in theory come arbitrarily close to the optimum. Importantly,

the variability of the solution stems from our numerical technique; it has

nothing to do with the error terms that we may have in models to account for

uncertainty. Stochastic solutions may even occur with non-stochastic meth-

ods: think of search spaces like those we showed in Figure�. Even if we used

a deterministic method like a gradient search, the many local minima would

make sure that repeated runs from different starting points result in different

solutions.

53



We can treat the result of a stochastic algorithm as a random variable with

some distribution � . What exactly the ‘result’ of a restart is depends on our

se�ing. We will want to look at the objective function value (ie, the solution

quality), but we may also look at the decision variables given by a solution,

that is, the portfolio weights. In any case, we collect all the quantities of in-

terest in a vector r . �e result r 9 of a restart 9 is a random draw from � .

�e trouble is that we do not knowwhat� looks like. But fortunately, there is

a simple way to find out for a given model. We run a reasonably large number

of restarts, each time store r 9 , and finally compute the empirical distribution

function of the r 9 , 9 = 1, . . . , number-of-restarts as an estimate for � . For a

given model or model class, the shape of the distribution� will depend on the

chosen method. Some techniques will be more appropriate than others and

give less variable and on average be�er results. And � will o�en depend on

the particular se�ings of the method, in particular the number of iterations –

the search time – that we allow for.

Unlike classical optimization techniques, heuristics can walk away from lo-

cal minima; they will not necessarily get trapped. So if we let the algorithm

search for longer, we can hope to find be�er solutions. For minimization prob-

lems, when we increase the number of iterations, the mass of � will move to

the le� and the distribution will become less variable. Ideally, when we let the

computing time grow ever longer,� should degenerate into a single point, the

global minimum. �ere exist proofs of this convergence to the global mini-

mum for many heuristic methods (see Gelfand andMi�er, 1985, for Simulated

Annealing; Rudolph, 1994, for Genetic Algorithms; Gutjahr, 2000, Stützle and

Dorigo, 2002, for Ant Colony Optimisation; Bergh and Engelbrecht, 2006, for

Particle Swarm Optimisation).

Unfortunately, these proofs are not much help for practical applications.�ey

o�en rely on asymptotic arguments; and many such proofs are nonconstruc-

tive (eg, Althöfer and Koschnick, 1991, for�reshold Accepting): they demon-

strate that parameter se�ings exist that lead (asymptotically) to the global

optimum. Yet, practically, there is no way of telling whether the chosen pa-

rameter se�ing is correct in this sense; we are never guaranteed that � really

degenerates to the global optimum as the number of iterations grows.

Fortunately, we do not need these proofs to make meaningful statements

about the performance of specific methods. For a given model class, we can

run experiments. Such experiments also help investigate the sensitivity of

the solutions with respect to different parameter se�ings for the heuristic.

Experimental results are of course no proof of the general appropriateness of

a method, but they are evidence of how a method performs for a given class

of models; o�en this is all that is needed for practical applications.

3.2. Local Search

See ?LSopt a�er a�aching the package.
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3.2.1. Man page

LSopt Stochastic Local Search

3.2.2. Description

Performs a simple stochastic Local Search.

3.2.3. Usage

LSopt(OF, algo = list(), ...)

3.2.4. Arguments

OF �e objective function, to be minimised. Its first argument needs to be a

solution; ... arguments are also passed.

algo List of se�ings. See Details.

... Other variables to be passed to the objective function and to the neigh-

bourhood function. See Details.

3.2.5. Details

Local Search (ls) changes an initial solution for a number of times, accept-

ing only such changes that lead to an improvement in solution quality (as

measured by the objective function OF). More specifically, in each iteration,

a current solution xc is changed through a function algo$neighbour. �is

function takes xc as an argument and returns a new solution xn. If xn is not

worse than xc, ie, if OF(xn,...)<=OF(xc,...), then xn replaces xc.

�e list algo contains the following items:

nS �e number of steps. �e default is 1000; but this se�ing depends very

much on the problem.

nI Total number of iterations, with default NULL. If specified, it will override

nS. �e option is provided to makes it easier to compare and switch

between functions LSopt, TAopt and SAopt.

x0 �e initial solution.�is can be a function; it will then be called once with-

out arguments to compute an initial solution, ie, x0 <- algo$x0().

�is can be useful when LSopt is called in a loop of restarts and each

restart is to have its own starting value.
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neighbour �eneighbourhood function, called as neighbour(x, ...). Its

first argument must be a solution x; it must return a changed solution.

printDetail If TRUE (the default), information is printed. If an integer i

greater then one, information is printed at very ith step.

printBar If TRUE (the default), a txtProgressBar (from package utils) is

printed). �e progress bar is not shown if printDetail is an integer

greater than 1.

storeF if TRUE (the default), the objective function values for every solution

in every generation are stored and returned as matrix Fmat.

storeSolutions default is FALSE. If TRUE, the solutions (ie, decision vari-

ables) in every generation are stored and returned in list xlist (see

Value section below). To check, for instance, the current solution at the

end of the ith generation, retrieve xlist[[c(2L, i)]].

OF.target Numeric; when specified, the algorithmwill stopwhen an objective-

function value as low as OF.target (or lower) is achieved.�is is useful

when an optimal objective-function value is known: the algorithm will

then stop and not waste time searching for a be�er solution.

At theminimum, algo needs to contain an initial solution x0 and a neighbour

function.

ls works on solutions through the functions neighbour and OF, which are

specified by the user. �us, a solution need not be a numeric vector, but can

be any other data structure as well (eg, a list or a matrix).

To run silently (except for warnings and errors), algo$printDetail and

algo$printBar must be FALSE.

3.2.6. Value

A list:

xbest best solution found.

OFvalue objective function value associated with best solution.

Fmat a matrix with two columns. Fmat[ ,1L] contains the proposed solu-

tion over all iterations; Fmat[ ,2L] contains the accepted solutions.

xlist if algo$storeSolutions is TRUE, a list; else NA. Contains the neigh-

bour solutions at a given iteration (xn) and the current solutions (xc).

Example: Fmat[i, 2L] is the objective function value associated with

xlist[[c(2L, i)]].

initial.state the value of .Random.seed when the function was called.
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3.2.7. Diagnostics

• check the neighbourhood

• how o�en are solutions accepted?

• paths of different restarts

3.3. �reshold Accepting

See ?TAopt a�er a�aching the package.

3.3.1. Help page

TAopt Optimisation with �reshold Accepting

3.3.2. Description

�e function implements the �reshold Accepting algorithm.

3.3.3. Usage

TAopt(OF, algo = list(), ...)

3.3.4. Arguments

OF �e objective function, to be minimised. Its first argument needs to be a

solution x; it will be called as OF(x, ...).

algo A list of se�ings for the algorithm. See Details.

... other variables passed to OF and algo$neighbour. See Details.

3.3.5. Details

�reshold Accepting (ta) changes an initial solution iteratively; the algorithm

stops a�er a fixed number of iterations. Conceptually, ta consists of a loop

than runs for a number of iterations. In each iteration, a current solution xc

is changed through a function algo$neighbour. If this new (or neighbour)

solution xn is not worse than xc, ie, if OF(xn,...) <= OF(xc,...), then

xn replaces xc. If xn is worse, it still replaces xc as long as the difference
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in ‘quality’ between the two solutions is less than a threshold tau; more pre-

cisely, as long as OF(xn,...) - tau <= OF(xc,...). �us, we also accept

a new solution that is worse than its predecessor; just not too much worse.

�e threshold is typically decreased over the course of the optimisation. For

zero thresholds TA becomes a stochastic local search.

�e thresholds can be passed through the list algo (see below). Otherwise,

they are automatically computed through the procedure described in Gilli et

al. (2006). When the thresholds are created automatically, the final threshold

is always zero.

�e list algo contains the following items.

nS �e number of steps per threshold. �e default is 1000; but this se�ing

depends very much on the problem.

nT �e number of thresholds. Default is 10; ignored if algo$vT is specified.

nI Total number of iterations, with default NULL. If specified, it will override

nSwith ceiling(nI/nT). Using this optionmakes it easier to compare

and switch between functions LSopt, TAopt and SAopt.

nD �e number of random steps to compute the threshold sequence. Defaults

to 2000. Only used if algo$vT is NULL.

q �e highest quantile for the threshold sequence. Defaults to 0.5. Only used

if algo$vT is NULL. If q is zero, TAopt will run with algo$nT zero-

thresholds (ie, like a Local Search).

x0 �e initial solution. If this is a function, it will be called once without

arguments to compute an initial solution, ie, x0 <- algo$x0(). �is

can be useful when the routine is called in a loop of restarts, and each

restart is to have its own starting value.

vT �e thresholds. A numeric vector. If NULL (the default), TAopt will com-

pute algo$nT thresholds. Passing threshold can be useful when similar

problems are handled. �en the time to sample the objective function

to compute the thresholds can be saved (ie, we save algo$nD function

evaluations). If the thresholds are computed and algo$printDetail is

TRUE, the time required to evaluate the objective function will be mea-

sured and an estimate for the remaining computing time is issued. �is

estimate is o�en very crude.

neighbour �eneighbourhood function, called as neighbour(x, ...). Its

first argument must be a solution x; it must return a changed solution.

printDetail If TRUE (the default), information is printed. If an integer i

greater then one, information is printed at very ith iteration.

printBar If TRUE (default is FALSE), a txtProgressBar (frompackage utils)

is printed. �e progress bar is not shown if printDetail is an integer

greater than 1.

scale �e thresholds are multiplied by scale. Default is 1.
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drop0 When thresholds are computed, should zero values be dropped from

the sample of objective-function values? Default is FALSE.

stepUp Defaults to 0. If an integer greater than zero, then the thresholds are

recycled, ie, vT is replaced by rep(vT, algo$stepUp + 1) (and the

number of thresholdswill be increased by algo$nT times algo$stepUp).

�is option works for supplied as well as computed thresholds. Prac-

tically, this will have the same effect as restarting from a returned so-

lution. (In Simulated Annealing, this strategy goes by the name of ‘re-

heating’.)

thresholds.only Defaults to FALSE. If TRUE, compute only threshold se-

quence, but do not actually run ta.

storeF if TRUE (the default), the objective function values for every solution

in every generation are stored and returned as matrix Fmat.

storeSolutions Default is FALSE. If TRUE, the solutions (ie, decision vari-

ables) in every generation are stored and returned in list xlist (see

Value section below). To check, for instance, the current solution at the

end of the ith generation, retrieve xlist[[c(2L, i)]].

classify Logical; default is FALSE. If TRUE, the result will have a class

a�ribute TAopt a�ached. �is feature is experimental: the supported

methods (plot, summary) may change without warning.

OF.target Numeric; when specified, the algorithmwill stopwhen an objective-

function value as low as OF.target (or lower) is achieved.�is is useful

when an optimal objective-function value is known: the algorithm will

then stop and not waste time searching for a be�er solution.

At theminimum, algo needs to contain an initial solution x0 and a neighbour

function.

�e total number of iterations equals algo$nT times (algo$stepUp + 1)

times algo$nS (plus possibly algo$nD).

3.3.6. Value

TAopt returns a list with four components:

xbest the solution

OFvalue objective function value of the solution, ie, OF(xbest, ...)

Fmat if algo$storeF is TRUE, a matrix with one row for each iteration (ex-

cluding the initial algo$nD steps) and two columns. �e first column

contains the objective function values of the neighbour solution at a

given iteration; the second column contains the value of the current

solution. Since ta can walk away from locally-optimal solutions, the

best solution can be monitored through cummin(Fmat[ ,2L]).
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xlist if algo$storeSolutions is TRUE, a list; else NA. Contains the neigh-

bour solutions at a given iteration (xn) and the current solutions (xc).

Example: Fmat[i, 2L] is the objective function value associated with

xlist[[c(2L, i)]].

initial.state the value of .Random.seed when the function was called.

If algo$classifywas set to TRUE, the resulting list will have a class a�ribute

TAopt.

3.3.7. Note

If the ... argument is used, then all the objects passed with ... need to

go into the objective function and the neighbourhood function. It is recom-

mended to collect all information in a list myList and then write OF and

neighbour so that they are called as OF(x, myList) and neighbour(x,

myList). Note that x need not be a vector but can be any data structure (eg,

a matrix or a list).

Using thresholds of size 0 makes ta run as a Local Search.�e function LSopt

may be preferred then because of smaller overhead.

3.3.8. Diagnostics

• check the neighbourhood

• how o�en are solutions accepted?

• paths of different restarts

3.4. Simulated Annealing

See ?SAopt a�er a�aching the package.

3.4.1. Help page

SAopt Optimisation with Simulated Annealing

3.4.2. Description

�e function implements a Simulated-Annealing algorithm.
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3.4.3. Usage

SAopt(OF, algo = list(), ...)

3.4.4. Arguments

OF �e objective function, to be minimised. Its first argument needs to be a

solution x; it will be called as OF(x, ...).

algo A list of se�ings for the algorithm. See Details.

... other variables passed to OF and algo$neighbour. See Details.

3.4.5. Details

SimulatedAnnealing (sa) changes an initial solution iteratively; the algorithm

stops a�er a fixed number of iterations. Conceptually, sa consists of a loop

than runs for a number of iterations. In each iteration, a current solution xc

is changed through a function algo$neighbour. If this new (or neighbour)

solution xn is not worse than xc, ie, if OF(xn,...) <= OF(xc,...), then xn

replaces xc. If xn is worse, it still replaces xc, but only with a certain prob-

ability. �is probability is a function of the degree of the deterioration (the

greater, the less likely the new solution is accepted) and the current iteration

(the longer the algorithm has already run, the less likely the new solution is

accepted).

�e list algo contains the following items.

nS �e number of steps per temperature. �e default is 1000; but this se�ing

depends very much on the problem.

nT �e number of temperatures. Default is 10.

nI Total number of iterations, with default NULL. If specified, it will override

nSwith ceiling(nI/nT). Using this optionmakes it easier to compare

and switch between functions LSopt, TAopt and SAopt.

nD �e number of random steps to calibrate the temperature. Defaults to

2000.

initT Initial temperature. Defaults to NULL, in which case it is automatically

chosen so that initProb is achieved.

finalT Final temperature. Defaults to 0.

alpha �e cooling constant. �e current temperature is multiplied by this

value. Default is 0.9.

mStep Step multiplier. �e default is 1, which implies constant number of

steps per temperature. If greater than 1, the step number nS is increased

to m*nS (and rounded).
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x0 �e initial solution. If this is a function, it will be called once without

arguments to compute an initial solution, ie, x0 <- algo$x0(). �is

can be useful when the routine is called in a loop of restarts, and each

restart is to have its own starting value.

neighbour �eneighbourhood function, called as neighbour(x, ...). Its

first argument must be a solution x; it must return a changed solution.

printDetail If TRUE (the default), information is printed. If an integer i

greater then one, information is printed at very ith iteration.

printBar If TRUE (default is FALSE), a txtProgressBar (frompackage utils)

is printed. �e progress bar is not shown if printDetail is an integer

greater than 1.

storeF if TRUE (the default), the objective function values for every solution

in every generation are stored and returned as matrix Fmat.

storeSolutions Default is FALSE. If TRUE, the solutions (ie, decision vari-

ables) in every generation are stored and returned in list xlist (see

Value section below). To check, for instance, the current solution at the

end of the ith generation, retrieve xlist[[c(2L, i)]].

classify Logical; default is FALSE. If TRUE, the result will have a class at-

tribute SAopt a�ached.

OF.target Numeric; when specified, the algorithmwill stopwhen an objective-

function value as low as OF.target (or lower) is achieved.�is is useful

when an optimal objective-function value is known: the algorithm will

then stop and not waste time searching for a be�er solution.

At theminimum, algo needs to contain an initial solution x0 and a neighbour

function.

�e total number of iterations equals algo$nT times algo$nS (plus possibly

algo$nD).

3.4.6. Value

SAopt returns a list with five components:

xbest the solution

OFvalue objective function value of the solution, ie, OF(xbest, ...)

Fmat if algo$storeF is TRUE, a matrix with one row for each iteration (ex-

cluding the initial algo$nD steps) and two columns. �e first column

contains the objective function values of the neighbour solution at a

given iteration; the second column contains the value of the current

solution. Since sa can walk away from locally-optimal solutions, the

best solution can be monitored through cummin(Fmat[ ,2L]).
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xlist if algo$storeSolutions is TRUE, a list; else NA. Contains the neigh-

bour solutions at a given iteration (xn) and the current solutions (xc).

Example: Fmat[i, 2L] is the objective function value associated with

xlist[[c(2L, i)]].

initial.state the value of .Random.seed when the function was called.

If algo$classifywas set to TRUE, the resulting list will have a class a�ribute

TAopt.

3.4.7. Note

If the ... argument is used, then all the objects passed with ... need to

go into the objective function and the neighbourhood function. It is recom-

mended to collect all information in a list myList and then write OF and

neighbour so that they are called as OF(x, myList) and neighbour(x,

myList). Note that x need not be a vector but can be any data structure (eg,

a matrix or a list).

Using an initial and final temperature of zero means that sa will be equiva-

lent to a Local Search. �e function LSopt may be preferred then because of

smaller overhead.

3.4.8. Diagnostics

• check the neighbourhood

• how o�en are solutions accepted?

• paths of different restarts

63





4. Optimisation with

multiple-solution methods (a.k.a.

population-based methods)

Multiple-solution methods are – in principle – very similar to single-solution

methods. In the previous chapter, we gave the following pseudocode to ex-

plain an iterative method.

1: generate initial solution G c

2: while stopping condition not met do

3: create new solution Gn
= N (G c)

4: if A(q, Gn, G c, . . .) then G c
= Gn

5: end while

6: return G c

4.1. Differential Evolution

See ?DEopt a�er a�aching the package.

4.1.1. Description

DEopt Optimisation with Differential Evolution

4.1.2. Description

�e function implements the standard Differential Evolution algorithm.

4.1.3. Usage

DEopt(OF, algo = list(), ...)
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4.1.4. Arguments

OF �e objective function, to be minimised. See Details.

algo A list with the se�ings for algorithm. See Details and Examples.

... Other pieces of data required to evaluate the objective function. See De-

tails and Examples.

4.1.5. Details

�e function implements the standard Differential Evolution (no ji�ering or

other features). Differential Evolution (de) is a population-based optimisa-

tion heuristic proposed by Storn and Price (1997). de evolves several solutions

(collected in the ‘population’) over a number of iterations (‘generations’). In

a given generation, new solutions are created and evaluated; be�er solutions

replace inferior ones in the population. Finally, the best solution of the pop-

ulation is returned. See the references for more details on the mechanisms.

To allow for constraints, the evaluation works as follows: a�er a new solu-

tion is created, it is (i) repaired, (ii) evaluated through the objective function,

(iii) penalised. Step (ii) is done by a call to OF; steps (i) and (iii) by calls to

algo$repair and algo$pen. Step (i) and (iii) are optional, so the respective

functions default to NULL. A penalty is a positive number added to the ‘clean’

objective function value, so it can also be directly wri�en in the OF. Writing a

separate penalty function is o�en clearer; it can bemore efficient if either only

the objective function or only the penalty function can be vectorised. (Con-

straints can also be added without these mechanisms. Solutions that violate

constraints can, for instance, be mapped to feasible solutions, but without

actually changing them. See Maringer and Oyewumi, 2007, for an example.)

Conceptually, de consists of two loops: one loop across the generations and,

in any given generation, one loop across the solutions. DEopt indeed uses,

as the default, two loops. But it does not ma�er in what order the solu-

tions are evaluated (or repaired or penalised), so the second loop can be vec-

torised. �is is controlled by the variables algo$loopOF, algo$loopRepair

and algo$loopPen, which all default to TRUE. Examples are given in the vi-

gne�es and in the book. �e respective algo$loopFun must then be set to

FALSE.

All objects that are passed through ... will be passed to the objective func-

tion, to the repair function and to the penalty function.

�e list algo collects the the se�ings for the algorithm. Strictly necessary are

only min and max (to initialise the population). Here are all possible argu-

ments:

CR probability for crossover. Defaults to 0.9. Using default se�ings may not

be a good idea.
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F �e step size. Typically a numeric vector of length one; default is 0.5. Using

default se�ings may not be a good idea. (F can also be a vector with

different values for each decision variable.)

nP population size. Defaults to 50. Using default se�ings may not be a good

idea.

nG number of generations. Defaults to 300. Using default se�ings may not be

a good idea.

min, max vectors of minimum and maximum parameter values. �e vectors

min and max are used to determine the dimension of the problem and to

randomly initialise the population. Per default, they are no constraints:

a solutionmaywell be outside these limits. Only if algo$minmaxConstr

is TRUE will the algorithm repair solutions outside the min and max

range.

minmaxConstr if TRUE, algo$min and algo$max are considered constraints.

Default is FALSE.

pen a penalty function. Default is NULL (no penalty).

initP optional: the initial population. A matrix of size length(algo$min)

times algo$nP, or a function that creates such a matrix. If a function,

it should take no arguments.

repair a repair function. Default is NULL (no repairing).

loopOF logical. Should the OF be evaluated through a loop? Defaults to TRUE.

loopPen logical. Should the penalty function (if specified) be evaluated through

a loop? Defaults to TRUE.

loopRepair logical. Should the repair function (if specified) be evaluated

through a loop? Defaults to TRUE.

printDetail If TRUE (the default), information is printed. If an integer i

greater then one, information is printed at very ith generation.

printBar If TRUE (the default), a txtProgressBar is printed.

storeF if TRUE (the default), the objective function values for every solution

in every generation are stored and returned as matrix Fmat.

storeSolutions default is FALSE. If TRUE, the solutions (ie, decision vari-

ables) in every generation are stored and returned as a list P in list

xlist (see Value section below). To check, for instance, the solutions at

the end of the ith generation, retrieve xlist[[c(1L, i)]]. �is will

be a matrix of size length(algo$min) times algo$nP. (To be consis-

tent with other functions, xlist is itself a list. In the case of DEopt, it

contains just one element.)

classify Logical; default is FALSE. If TRUE, the result will have a class

a�ribute TAopt a�ached. �is feature is experimental: the supported

methods may change without warning.
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drop If FALSE (the default), the dimension is not dropped from a single so-

lution when it is passed to a function. (�at is, the function will receive

a single-column matrix.)

4.1.6. Value

A list:

xbest the solution (the best member of the population), which is a numeric

vector

OFvalue objective function value of best solution

popF a vector. �e objective function values in the final population.

Fmat if algo$storeF is TRUE, a matrix of size algo$nG times algo$nP con-

taining the objective function values of all solutions over the genera-

tions; else NA.

xlist if algo$storeSolutions is TRUE, a list that contains a list P of ma-

trices and a matrix initP (the initial solution); else NA.

initial.state the value of .Random.seed when the function was called.

4.1.7. Diagnostics

Example 1 – Trefethen’s function

We use tfTrefethen as the objective function; see ?testFunctions. To

demonstrate the shape of the function, we evaluate it on a grid.

> OF <- tfTrefethen

> n <- 100L

> surf <- matrix(NA, n, n)

> x1 <- seq(from = -10, to = 10, length.out = n)

> for (i in seq_len(n))

for (j in seq_len(n))

surf[i, j] <- tfTrefethen(c(x1[i], x1[j]))

We can now plot these values, including the position of the true minimum.

(Since we discretised the function, there may be a small discrepancy between

the apparent position of the minimum as indicated by the contour plot and

the position indicated by the lines.)

> par(bty = "n", las = 1, mar = c(3,4,0,0),

ps = 8, tck = 0.001, mgp = c(3, 0.5, 0))

> contour(x1, x1, surf, nlevels=5, col = grey(0.6))

> ## the actual minimum

> abline(v = -0.02440308, h = 0.21061243, col = grey(0.6))
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Now we solve it with DEopt. Note that storeSolutions is TRUE.

> algo <- list(nP = 50L,

nG = 300L,

F = 0.6,

CR = 0.9,

min = c(-10,-10),

max = c(10,10),

printDetail = FALSE,

printBar = FALSE,

storeF = TRUE,

storeSolutions = TRUE)

> sol <- DEopt(OF = OF, algo = algo)

We can check the solution sol.

> names(sol)

[1] "xbest" "OFvalue" "popF"

[4] "Fmat" "xlist" "initial.state"

> sd(sol$popF)

[1] 6.53e-16

> ts.plot(sol$Fmat, xlab = "generations", ylab = "OF")

> length(sol$xlist)

[1] 2

> xlist <- sol$xlist[[1L]]
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xlist actually holds a list of matrices (for symmetry: for other functions,

xlist contains more than one item.)

Suppose we wanted to look at a particular solution (one column in the popu-

lation matrix). We could do it like this.

> ## show solution 1 (column 1) in population over time

> xlist[[ 1L]][ ,1L] ## at the end of generation 1

[1] 5.15 1.90

> ## ...

> xlist[[ 10L]][ ,1L] ## at the end of generation 10

[1] 2.73 1.69

> ## ...

> xlist[[300L]][ ,1L] ## at the end of generation 300

[1] -0.0244 0.2106

> res <- sapply(xlist, `[`, 1:2, 1) ## get row 1 and 2 from column 1

> res2 <- sapply(xlist, `[`, TRUE, 1) ## simpler

> all.equal(res, res2)

[1] TRUE

> dim(res)

[1] 2 300

> res[ ,1L]

[1] 5.15 1.90

> res[ ,2L]

[1] -0.223 0.238

> res[ ,300L]

[1] -0.0244 0.2106

Alternatively, suppose we wanted to check how parameter 2 varies within

the population over the course of the optimisation.
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> ## show parameter 2 (row 2) in population over time

> xlist[[ 1L]][2L, ] ## at the end of generation 1

[1] 1.896 0.594 4.152 2.525 -7.981 1.332 7.519 -4.542

[9] 0.456 8.297 -7.909 -5.370 2.604 -3.559 5.407 3.095

[17] -4.045 3.249 -6.074 1.845 3.648 -0.723 7.408 3.577

[25] 5.245 -0.850 3.138 -4.638 -5.922 0.515 1.135 -3.257

[33] 9.035 -1.259 2.974 -1.402 8.046 3.995 0.151 9.538

[41] 2.769 3.446 3.185 6.354 5.702 7.001 8.237 -1.132

[49] 3.521 -5.578

> ## ...

> xlist[[ 10L]][2L, ] ## at the end of generation 10

[1] 1.6949 -0.2639 -1.7711 -0.7789 -1.2700 0.0371 -0.4992

[8] -1.9035 -1.1312 -0.0767 0.9237 1.4012 -0.3352 0.2084

[15] 2.1839 1.6912 0.5039 0.3154 -1.2008 2.1842 0.3678

[22] -0.7232 0.3646 -0.2448 -0.8641 1.2337 -0.0326 -0.1027

[29] 0.9163 -1.2459 1.1268 -0.4820 1.2142 -1.2592 -0.9492

[36] -1.7428 1.3973 -0.3111 0.1515 0.5512 -1.3602 -0.2445

[43] 1.9453 4.2816 1.4264 -0.9882 0.5016 3.0453 1.2420

[50] -0.9352

> ## ...

> xlist[[300L]][2L, ] ## at the end of generation 300

[1] 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211

[10] 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211

[19] 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211

[28] 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211

[37] 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211

[46] 0.211 0.211 0.211 0.211 0.211

> res <- sapply(xlist, `[`, 2, 1:50)

> res <- sapply(xlist, `[`, 2, TRUE) ## simpler

> dim(res)

[1] 50 300

> res[ ,1L]

[1] 1.896 0.594 4.152 2.525 -7.981 1.332 7.519 -4.542

[9] 0.456 8.297 -7.909 -5.370 2.604 -3.559 5.407 3.095

[17] -4.045 3.249 -6.074 1.845 3.648 -0.723 7.408 3.577

[25] 5.245 -0.850 3.138 -4.638 -5.922 0.515 1.135 -3.257

[33] 9.035 -1.259 2.974 -1.402 8.046 3.995 0.151 9.538

[41] 2.769 3.446 3.185 6.354 5.702 7.001 8.237 -1.132

[49] 3.521 -5.578
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> res[ ,2L]

[1] 0.238 0.594 1.636 2.525 -5.298 1.332 6.342 -4.542

[9] 0.456 8.297 -4.970 -5.370 2.604 -3.559 5.407 3.095

[17] -1.966 3.249 3.743 3.810 3.648 -0.723 0.365 3.577

[25] 5.245 -4.577 3.138 -4.638 -5.922 0.515 -2.178 -2.371

[33] 1.214 -1.259 2.974 -1.402 6.044 3.995 0.151 6.516

[41] 2.769 3.446 3.185 6.354 5.702 -6.052 8.237 -5.409

[49] 3.521 -5.578

> res[ ,300L]

[1] 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211

[10] 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211

[19] 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211

[28] 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211

[37] 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211

[46] 0.211 0.211 0.211 0.211 0.211

We can use this information to show how the solutions behaved over time.

> ## transposing xlist[[i]] gives a two-column matrix -- see ?points

> ## initial solutions

> points(t(xlist[[1L]]), pch = 21, bg=grey(0.9), col = grey(.2))

> ## solutions at the end of generation 100

> points(t(xlist[[100L]]), pch = 21, bg=grey(0.9), col = grey(.2))

> ## solutions at the end of generation 100

> points(t(xlist[[300L]]), pch = 21, bg=grey(0.9), col = grey(.2))
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Example 2 – Nelson–Siegel with restrictions

As a second example, we look at the Nelson–Siegel model (see gms, Chap-

ter 14). We will try to answer two questions: (1) how relevant is the range
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over which we initialise the population?, and (2) how can we be sure that a

constraint works?

We start with the objective function.

> OF <- function(par, Data) {

## compute model yields

y <- Data$model(par, Data$tm)

## all rates finite?

validRates <- !any(is.na(y))

if (validRates) {

## any rates negative? if yes, add penalty

pen1 <- sum(abs(y - abs(y))) * Data$ww

F <- max(abs(y - Data$yM)) + pen1

} else F <- 1e8

F

}

Now set up a true yield curve and try to recover its parameters with DEopt.

�e first true parameter is 5, but we initialise the population over the range

from 0 to 1.

> algo <- list(nP = 200L, nG = 100L,

F = 0.50, CR = 0.99,

min = c( 0,-10,-10, 0),

max = c( 1, 10, 10, 10),

storeSolutions = TRUE, printBar = FALSE)

> ## set up yield curve and put information in Data

> tm <- 1:20 ## times to maturity

> parTRUE <- c(5, 3, 2, 1) ## true parameters

> yM <- NS(parTRUE, tm) ## true market yields

> Data <- list(yM = yM, tm = tm, model = NS, ww = 0.1, maxb1 = 4)

> ## solve with DEopt

> sol <- DEopt(OF = OF, algo = algo, Data = Data)

Differential Evolution.

Best solution has objective function value 0.0133 ;

standard deviation of OF in final population is 0.00162 .

> P <- sol$xlist[[1L]] ## all population matrices

> p1 <- sapply(P, `[`, 1L, TRUE)

We plot the values of the first parameter in the population over the course of

the optimisation. We see that de quickly ‘escapes’ from the initial range.
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> par(bty = "n", las = 1, mar = c(4,4,0,0),

ps = 8, tck = 0.001, mgp = c(3, 0.5, 0))

> plot(jitter(rep(seq_len(algo$nG), each = algo$nP), factor = 5),

p1,

pch = 21, cex = 0.01, ylim = c(-5,10),

xlab = "", ylab = "")

> mtext("generation", 1, line = 2)

> mtext("parameter\nvalue", 2, line = 1)
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Now suppose we had included a constraint: the parameter should not be

greater than 4. (Even though the true parameter is 5.) We adjust the objective

function by adding a straightforward penalty. �is could certainly be refined,

but it is only an example here.

> OF2 <- function(par, Data) {

## compute model yields

y <- Data$model(par, Data$tm)

## all rates finite?

validRates <- !any(is.na(y))

if (validRates) {

## any rates negative? if yes, add penalty

pen1 <- sum(abs(y - abs(y))) * Data$ww

## is b1 greater than Data$maxb1? if yes, add penalty

pen2 <- par[1L] - Data$maxb1

pen2 <- pen2 + abs(pen2)

pen2 <- pen2

F <- max(abs(y - Data$yM)) + pen1 + pen2

} else F <- 1e8

F
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}

> ## solve with DEopt

> sol <- DEopt(OF = OF2, algo = algo, Data = Data)

Differential Evolution.

Best solution has objective function value 0.298 ;

standard deviation of OF in final population is 3.69e-05 .

> P <- sol$xlist[[1L]] ### all population matrices

> p1 <- sapply(P, `[`, 1, TRUE)

> par(bty = "n", las = 1, mar = c(4,4,0,0),

ps = 8, tck = 0.001, mgp = c(3, 0.5, 0))

> plot(jitter(rep(seq_len(algo$nG), each = algo$nP), factor = 5),

p1,

pch = 21, cex = 0.01, ylim = c(-5,10),

xlab = "", ylab = "")

> abline(h = 4, col=grey(0.5))

> mtext("generation", 1, line = 2)

> mtext("parameter\nvalue", 2, line = 1)
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We see that now the population does not go beyond a value of 4.

4.2. Genetic Algorithm

See ?GAopt a�er a�aching the package.

4.2.1. Description

GAopt Optimisation with a Genetic Algorithm
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4.2.2. Description

A simple Genetic Algorithm for minimising a function.

4.2.3. Usage

GAopt (OF, algo = list(), ...)

4.2.4. Arguments

OF �e objective function, to be minimised. See Details.

algo A list with the se�ings for algorithm. See Details and Examples.

... Other pieces of data required to evaluate the objective function. See De-

tails and Examples.

4.2.5. Details

�e function implements a simple Genetic Algorithm (ga). A ga evolves a

collection of solutions (the so-called population), all of which are coded as

vectors containing only zeros and ones. (In GAopt, solutions are of mode

logical.) �e algorithm starts with randomly-chosen or user-supplied pop-

ulation and aims to iteratively improve this population by mixing solutions

and by switching single bits in solutions, both at random. In each iteration,

such randomly-changed solutions are compared with the original population

and be�er solutions replace inferior ones. In GAopt, the population size is

kept constant.

ga language: iterations are called generations; new solutions are called off-

spring or children (and the existing solutions, from which the children are

created, are parents); the objective function is called a fitness function; mix-

ing solutions is a crossover; and randomly changing solutions is called mu-

tation. �e choice which solutions remain in the population and which ones

are discarded is called selection. In GAopt, selection is pairwise: a given child

is compared with a given parent; the be�er of the two is kept. In this way, the

best solution is automatically retained in the population.

To allow for constraints, the evaluation works as follows: a�er new solutions

are created, they are (i) repaired, (ii) evaluated through the objective function,

(iii) penalised. Step (ii) is done by a call to OF; steps (i) and (iii) by calls to

algo$repair and algo$pen. Step (i) and (iii) are optional, so the respective

functions default to NULL. A penalty can also be directly wri�en in the OF,

since it amounts to a positive number added to the ‘clean’ objective function

value; but a separate function is o�en clearer. A separate penalty function is

advantagous if either only the objective function or only the penalty function

can be vectorised.
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Conceptually a ga consists of two loops: one loop across the generations and,

in any given generation, one loop across the solutions.�is is the default, con-

trolled by the variables algo$loopOF, algo$loopRepair and algo$loopPen,

which all default to TRUE. But it does not ma�er in what order the solutions

are evaluated (or repaired or penalised), so the second loop can be vectorised.

�e respective algo$loopFunmust then be set to FALSE. (See also the exam-

ples for DEopt and PSopt.)

�e evaluation of the objective function in a given generation can even be

distributed. For this, an argument algo$methodOF needs to be set; see below

for details (and Schumann, 2011, for examples).

All objects that are passed through ... will be passed to the objective func-

tion, to the repair function and to the penalty function.

�e list algo contains the following items:

nB number of bits per solution. Must be specified.

nP population size. Defaults to 50. Using default se�ings may not be a good

idea.

nG number of iterations (‘generations’). Defaults to 300. Using default set-

tings may not be a good idea.

crossover �e crossover method. Default is "onePoint"; also possible is

“uniform”.

prob �e probability for switching a single bit. Defaults to 0.01; typically a

small number.

pen a penalty function. Default is NULL (no penalty).

repair a repair function. Default is NULL (no repairing).

initP optional: the initial population. A logicalmatrix of size length(algo$nB)

times algo$nP, or a function that creates such a matrix. If a func-

tion, it must take no arguments. If mode(mP) is not logical, then

storage.mode(mP) will be tried (and a warning will be issued).

loopOF logical. Should the OF be evaluated through a loop? Defaults to TRUE.

loopPen logical. Should the penalty function (if specified) be evaluated through

a loop? Defaults to TRUE.

loopRepair logical. Should the repair function (if specified) be evaluated

through a loop? Defaults to TRUE.

methodOF loop (the default), vectorised, snow or multicore. Se�ing vectorised

is equivalent to having algo$loopOF set to FALSE (and methodOF over-

rides loopOF). snow and multicore use functions clusterApply and

mclapply, respectively. For snow, an object algo$cl needs to be spec-

ified (see below). For multicore, optional arguments can be passed

through algo$mc.control (see below).
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cl a cluster object or the number of cores. See documentation of package

parallel.

mc.control a list of named elements; optional se�ings for mclapply (for

instance,

list(mc.set.seed = FALSE))

printDetail If TRUE (the default), information is printed.

printBar If TRUE (the default), a txtProgressBar is printed.

storeF If TRUE (the default), the objective function values for every solution

in every generation are stored and returned as matrix Fmat.

storeSolutions If TRUE, the solutions (ie, binary strings) in every gener-

ation are stored and returned as a list P in list xlist (see Value sec-

tion below). To check, for instance, the solutions at the end of the ith

generation, retrieve xlist[[c(1L, i)]]. �is will be a matrix of size

algo$nB times algo$nP.

classify Logical; default is FALSE. If TRUE, the result will have a class

a�ribute TAopt a�ached. �is feature is experimental: the supported

methods may change without warning.

4.2.6. Value

A list:

xbest the solution (the best member of the population)

OFvalue objective function value of best solution

popF a vector. �e objective function values in the final population.

Fmat if algo$storeF is TRUE, a matrix of size algo$nG times algo$nP con-

taining the objective function values of all solutions over the genera-

tions; else NA

xlist if algo$storeSolutions is TRUE, a list that contains a list P of ma-

trices and a matrix initP (the initial solution); else NA.

initial.state the value of .Random.seed when the function was called.

4.2.7. Diagnostics

4.3. Particle Swarm Optimisation

See ?PSopt a�er a�aching the package.
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4.3.1. Description

PSopt Particle Swarm Optimisation

4.3.2. Description

�e function implements Particle Swarm Optimisation.

4.3.3. Usage

PSopt(OF, algo = list(), ...)

4.3.4. Arguments

OF the objective function to be minimised. See Details.

algo a list with the se�ings for algorithm. See Details and Examples.

... pieces of data required to evaluate the objective function. See Details.

4.3.5. Details

�e function implements Particle Swarm Optimisation (ps); see the refer-

ences for details on the implementation. ps is a population-based optimisa-

tion heuristic. It develops several solutions (a ‘population’) over a number of

iterations. ps is directly applicable to continuous problems since the popula-

tion is stored in real-valued vectors. In each iteration, a solution is updated by

adding another vector called velocity. �ink of a solution as a position in the

search space, and of velocity as the direction into which this solution moves.

Velocity changes over the course of the optimization: it is biased towards the

best solution found by the particular solution and the best overall solution.

�e algorithm stops a�er a fixed number of iterations.

To allow for constraints, the evaluation works as follows: a�er a new solu-

tion is created, it is (i) repaired, (ii) evaluated through the objective function,

(iii) penalised. Step (ii) is done by a call to OF; steps (i) and (iii) by calls to

algo$repair and algo$pen. Step (i) and (iii) are optional, so the respective

functions default to NULL. A penalty can also be directly wri�en in the OF,

since it amounts to a positive number added to the ‘clean’ objective function

value. It can be advantageous to write a separate penalty function if either

only the objective function or only the penalty function can be vectorised.
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(Constraints can also be added without these mechanisms. Solutions that vi-

olate constraints can, for instance, be mapped to feasible solutions, but with-

out actually changing them. SeeMaringer andOyewumi, 2007, for an example

with Differential Evolution.)

Conceptually, ps consists of two loops: one loop across the iterations and, in

any given generation, one loop across the solutions. �is is the default, con-

trolled by the variables algo$loopOF, algo$loopRepair, algo$loopPen

and loopChangeV which all default to TRUE. But it does not ma�er in what

order the solutions are evaluated (or repaired or penalised), so the second loop

can be vectorised. Examples are given in the vigne�es and in the book. �e

respective algo$loopFun must then be set to FALSE.

�e objective function, the repair function and and the penalty function will

be called as fun(solution, ...).

�e list algo contains the following items:

nP population size. Defaults to 100. Using default se�ings may not be a good

idea.

nG number of iterations. Defaults to 500. Using default se�ings may not be a

good idea.

c1 theweight towards the individual’s best solution. Typically between 0 and

2; defaults to 1. Using default se�ings may not be a good idea. In some

cases, even negative values work well: the solution is then driven off its

past best position. For ‘simple’ problems, se�ing c1 to zero may work

well: the population moves then towards the best overall solution.

c2 the weight towards the populations’s best solution. Typically between 0

and 2; defaults to 1. Using default se�ings may not be a good idea. In

some cases, even negative values work well: the solution is then driven

off the population’s past best position.

iner the inertia weight (a scalar), which reduces velocity. Typically between

0 and 1. Default is 0.9.

initV the standard deviation of the initial velocities. Defaults to 1.

maxV themaximum (absolute) velocity. Se�ing limits to velocity is sometimes

called velocity clamping. Velocity is the change in a given solution in

a given iteration. A maximum velocity can be set so to prevent unrea-

sonable velocities (‘overshooting’): for instance, if a decision variable

may lie between 0 and 1, then an absolute velocity much greater than

1 makes rarely sense.

min, max vectors of minimum and maximum parameter values. �e vectors

min and max are used to determine the dimension of the problem and to

randomly initialise the population. Per default, they are no constraints:

a solutionmaywell be outside these limits. Only if algo$minmaxConstr

is TRUE will the algorithm repair solutions outside the min and max

range.
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minmaxConstr if TRUE, algo$min and algo$max are considered constraints.

Default is FALSE.

pen a penalty function. Default is NULL (no penalty).

repair a repair function. Default is NULL (no repairing).

changeV a function to change velocity. Default is NULL (no change). �is

function is called before the velocity is added to the current solutions;

it can be used to impose restrictions like changing only a number of

decision variables.

initP optional: the initial population. A matrix of size length(algo$min)

times algo$nP, or a function that creates such a matrix. If a function,

it should take no arguments.

loopOF logical. Should the OF be evaluated through a loop? Defaults to TRUE.

loopPen logical. Should the penalty function (if specified) be evaluated through

a loop? Defaults to TRUE.

loopRepair logical. Should the repair function (if specified) be evaluated

through a loop? Defaults to TRUE.

loopChangeV logical. Should the changeV function (if specified) be evalu-

ated through a loop? Defaults to TRUE.

printDetail If TRUE (the default), information is printed. If an integer i

greater then one, information is printed at very ith iteration.

printBar If TRUE (the default), a txtProgressBar (from package utils) is

printed).

storeF If TRUE (the default), the objective function values for every solution

in every generation are stored and returned as matrix Fmat.

storeSolutions default is FALSE. If TRUE, the solutions (ie, decision vari-

ables) in every generation are stored as lists P and Pbest, both stored

in the list xlistwhich the function returns. To check, for instance, the

solutions at the end of the ith iteration, retrieve xlist[[c(1L, i)]];

the best solutions at the end of this iteration are in xlist[[c(2L,

i)]]. P[[i]] and Pbest[[i]]will bematrices of size length(algo$min)

times algo$nP.

classify Logical; default is FALSE. If TRUE, the result will have a class

a�ribute TAopt a�ached. �is feature is experimental: the supported

methods may change without warning.

drop Default is TRUE. If FALSE, the dimension is not dropped from a sin-

gle solution when it is passed to a function. (�at is, the function will

receive a single-column matrix.)
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4.3.6. Value

Returns a list:

xbest the solution

OFvalue objective function value of best solution

popF a vector: the objective function values in the final population

Fmat if algo$storeF is TRUE, a matrix of size algo$nG times algo$nP. Each

column contains the best objective function value found by the partic-

ular solution.

xlist if algo$storeSolutions is TRUE, a list that contains two lists P and

Pbest of matrices, and a matrix initP (the initial solution); else NA.

initial.state the value of .Random.seed when PSopt was called.

4.3.7. Diagnostics

4.4. Vectorisation and parallel evaluation of the

population

When we look at heuristics in principle, we manipulate and evolve solutions

through functions: new solutions are created as functions of existing solu-

tions; solutions are evaluated through the objective function; whether new

solutions are accepted is a function of (typically) the quality of the new so-

lutions; and so on. �is gives us much flexibility in how solutions are repre-

sented; in essence, any data structure (eg, a graph) could be directly handled,

provided we define appropriate functions to work with it.

Yet a number of (quite successful) heuristics, such as Differential Evolution

(DE) or Particle Swarm (PS), prescribe precisely how solutions are represented

and manipulated. In fact, these specific prescriptions essentially define those

heuristics. For DE and PS, for instance, a solution is a numeric vector; new so-

lutions are created as (noisy) linear combinations of existing solutions. While

this reduces the algorithms’ flexibility, it allows for a simpler (and more effi-

cient) generic implementation.

Let us be more concrete here. Since both DE and PS represent solutions as

numerical vectors, a natural way to store the solutions is a matrix % . In this

matrix, each column is one solution; each row represents a specific decision

variable. When we compute the objective function values for these solutions,

a straightforward strategy is to loop over the columns of % and call the ob-

jective function for each solution. In this case, the objective function should

take as arguments a single numeric vector (and possibly other data passed

through ...); the function should return a single number.

In somes cases, however, it may be preferable to actually write the objec-

tive function such that it expects the whole population as an argument, and
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then returns a vector of objective function values. To accommodate this be-

haviour, the functions DEopt, GAopt and PSopt have se�ings algo$loopFun,

inwhich ‘Fun’ can be ‘OF’ for objective function, but also, for instance, ‘repair’.

�ese se�ings default to TRUE, so the functions will loop over the solutions.

When such a loop-se�ing is FALSE, the respective function receives the whole

population as an argument.

In the next section we give three examples when this ‘evaluation in one step’

can be advantegeous. �e functions DEopt, GAopt and PSopt allow to imple-

ment the objective function (and also repair and penalty functions) like this.

For more details and examples, see Gilli et al. (2011).

4.4.1. Examples for vectorised computations

We give three cases in which vectorised computations are preferred to loops.

(Because the computations become faster.)

A test function

As an example, we use the Rosenbrock function, given by

=−1∑

8=1

(

100(G8+1 − G28 )2 + (1 − G8)2
)

.

�is test function is available in the package as the function tfRosenbrock

(see ?testFunctions). �e Rosenbrock function has a minimum of zero

when all elements of G are one. (In higher dimensions, this minimum may

not be unique.)

> tfRosenbrock

function(x) {

n <- length(x)

xi <- x[seq_len(n-1L)]

sum(100 * (x[2L:n] - xi * xi)^2 + (1 - xi)^2)

}

<bytecode: 0x55b872236d40>

<environment: namespace:NMOF>

So we define the objective function OF and test it with the known solution.

> OF <- tfRosenbrock ## see ?testFunctions

> size <- 5L ## set dimension

> x <- rep.int(1, size) ## the known solution ...

> OF(x) ## ... should give zero
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[1] 0

We set the parameters for DEopt. Note that in this example we are only con-

cerned with the speed of the computation, so the actual se�ings do not ma�er

so much.

> algo <- list(printBar = FALSE,

nP = 50L,

nG = 500L,

F = 0.6,

CR = 0.9,

min = rep(-100, size),

max = rep( 100, size))

Suppose we have several solutions, put into a matrix such that every column

is one solution. �en we could rewrite the function like so:

> ## a vectorised OF: works only with *matrix* x

> OF2 <- function(x) {

n <- dim(x)[1L]

xi <- x[1L:(n - 1L), ]

colSums(100 * (x[2L:n, ] - xi * xi)^2 + (1 - xi)^2)

}

We can test it by creating a number of random solutions.

> x <- matrix(rnorm(size * algo$nP), size, algo$nP)

> c(OF(x[ ,1L]), OF(x[ ,2L]), OF(x[ ,3L]))

[1] 1517 239 1458

> OF2(x)[1L:3L] ## should give the same result

[1] 1517 239 1458

> all.equal(OF2(x)[1L:3L], c(OF(x[ ,1L]), OF(x[ ,2L]), OF(x[ ,3L])))

[1] TRUE

As pointed out above, DEopt either can loop over the solutions, or it can

evaluate the whole population in one step. �e first behaviour is triggered

when algo$loopOF is set to TRUE, which is the default se�ing.

When we want to use OF2, we need to set algo$loopOF to FALSE.
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> set.seed(1223445)

> (t1 <- system.time(sol <- DEopt(OF = OF, algo = algo)))

Differential Evolution.

Best solution has objective function value 3.25e-16 ;

standard deviation of OF in final population is 7.07e-16 .

user system elapsed

0.129 0.000 0.130

> algo$loopOF <- FALSE

> set.seed(1223445)

> (t2 <- system.time(sol2 <- DEopt(OF = OF2, algo = algo)))

Differential Evolution.

Best solution has objective function value 3.25e-16 ;

standard deviation of OF in final population is 7.07e-16 .

user system elapsed

0.028 0.000 0.027

We can compare the solutions, and compute the speedup.

> sol$OFvalue ## both should be zero (with luck)

[1] 3.25e-16

> sol2$OFvalue

[1] 3.25e-16

> t1[[3L]]/t2[[3L]] ## speedup

[1] 4.81

Portfolio optimisation

Aportfolio can be described by aweight vectorF . Given a variance–covariance

matrix Σ, we can calculate the variance of such a portfolio like so:

F ′
ΣF .

Suppose now that we have a number of solutions, and we collect them in a

matrix, , such that every column is one solutionF . One approach would be
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now to loop over the columns, and for every column compute the variance.

But we can use a one-line computation as well: the variances of the solutions

are given by

diag(, ′
Σ, ) .

�is can bewri�en consisely, butwe are unnessarily computing the off-diagonal

elements of the resultingmatrix. One solution, then, is to recognise that diag(, ′
Σ, )

is equivalent to

]′

matrix
multiplication

︷︸︸︷

Σ, ,
︸      ︷︷      ︸

elementwise
multiplication

which is consise and more efficient. �e following example illustrates this.

We start by se�ing up a variance–covariance matrix Sigma and a population

W. (We would not need to include the budget constraint here since we are only

interested in computing time.)

> na <- 100L ## number of assets

> np <- 100L ## size of population

> trials <- seq_len(100L) ## for speed test

> ## a covariance matrix

> Sigma <- array(0.7, dim = c(na, na)); diag(Sigma) <- 1

> ## set up population

> W <- array(runif(na * np), dim = c(na, np))

> ## budget constraint

> scaleFun <- function(x) x/sum(x); W <- apply(W, 2L, scaleFun)

Now we can test the three variants described above.

> ## variant 1

> t1 <- system.time({

for (i in trials) {

res1 <- numeric(np)

for (j in seq_len(np)) {

w <- W[ ,j]

res1[j] <- w %*% Sigma %*% w

}

}

})

> ## variant 2

> t2 <- system.time({

for (i in trials) res2 <- diag(t(W) %*% Sigma %*% W)

})

> ## variant 3

> t3 <- system.time({

for (i in trials) res3 <- colSums(Sigma %*% W * W)

})
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All three computations should give the same result.

> all.equal(res1,res2)

[1] TRUE

> all.equal(res2,res3)

[1] TRUE

But the first variant requires more code than the others, and it is slower.

> t1 ## speedup for variant 1

user system elapsed

64.913 0.019 6.158

> t2 ## speedup for variant 2

user system elapsed

30.94 3.12 3.26

> t3 ## speedup for variant 3

user system elapsed

3.371 0.499 0.374

Residuals in a linear model

We wish to compute the residuals A of a linear model, ~ = -\ +A . Suppose we
have a population Θ of solution vectors; each column in Θ is one particular

solution \ . Now, as before we could compute

r = ~ − -\8

for every 8 ∈ {1, . . . , population size}. Alternatively, we may replace the loop

over those solutions with the computation

R = ~]′ − -Θ ,

in which ' is the matrix of residuals.

Again, an example. As before, we set up randomdata and a randompopulation

of solutions.
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> n <- 100L ## number of observation

> p <- 5L ## number of regressors

> np <- 100L ## population size

> trials <- seq_len(1000L)

> ## random data

> X <- array(rnorm(n * p), dim = c(n, p))

> y <- rnorm(n)

> ## random population

> Theta <- array(rnorm(p * np), dim = c(p, np))

> ## empty residuals matrix

> R1 <- array(NA, dim = c(n, np))

Now we can compare both variants.

> system.time({

for (i in trials)

for (j in seq_len(np))

R1[ ,j] <- y - X %*% Theta[ ,j]

})

user system elapsed

0.242 0.001 0.242

> system.time({

for (i in trials)

R2 <- y - X %*% Theta

})

user system elapsed

0.038 0.015 0.053

Note that we have not explicitly computed ~]′ but have used R’s recycling

rule.

We check whether we actually obtain the same result.

> all.equal(R1, R2) ## ... should be TRUE

[1] TRUE

See Chapter 14 in gms.

4.4.2. Distributed computations
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5. Other functions

In this chapter we briefly review a number of functions that were added to

the nmof package a�er the first edition of gms had been published.

5.1. Bracketing

�ere are two approaches to numerical root finding. �e first strategy is to

approximate the function in question by a simpler function whose zero we

can compute; doing this repeatedly should bring us closer to the desired root.

An example for this approach is Newton’s method.

�e second approach uses the fact that if the sign of a function is different

when evaluated at points 0 and 1, then there must be at least one root be-

tween 0 and 1 (given the function is well-behaved in that interval). Making

this interval smaller and smaller will bring us arbitrarily close a root.

�e function bracketing uses the second approach, though it does not re-

fine the interval. �e function was added in nmof version 0.16-0; it sup-

ports distributed evaluation of fun through package parallel (originally,

multicore (Urbanek, 2011) and snow (Tierney et al., 2011)).

> testFun <- function(x) {

Sys.sleep(0.1) ## wasting time...

cos(1/x^2)

}

> system.time(sol1 <- bracketing(testFun,

interval = c(0.3, 0.9),

n = 100L))

> system.time(sol2 <- bracketing(testFun,

interval = c(0.3, 0.9),

n = 100L,

cl = 2))

> all.equal(sol1, sol2)

bracketing Zero-Bracketing
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5.1.1. Description

Bracket the zeros (roots) of a univariate function

5.1.2. Usage

bracketing(fun, interval, ...,

lower = min(interval), upper = max(interval),

n = 20L,

method = c("loop", "vectorised", "multicore", "snow"),

mc.control = list(), cl = NULL)

5.1.3. Arguments

fun a univariate function; it will be called as fun(x, ...) with x being a

numeric vector

interval a numeric vector, containing the end-points of the interval to be

searched

... further arguments passed to fun

lower lower end-point. Ignored if interval is specified.

upper upper end-point. Ignored if interval is specified.

n the number of function evaluations. Must be at least 2 (in which case fun

is evaluated only at the end-points); defaults to 20.

method can be loop (the default), vectorised, multicore or snow. See

Details.

mc.control a list containing se�ings that will be passed to mclapply if

method is multicore. Must be a list of named elements. See the docu-

mentation of mclapply in package parallel.

cl default is NULL. If method is snow, this must be a cluster object or an inte-

ger (the number of cores to be used). See the documentation of packages

parallel and snow.

5.1.4. Details

bracketing evaluates fun at equal-spaced values of x between (and includ-

ing) lower and upper. If the sign of fun changes between two consecutive

x-values, bracketing reports these two x-values as containing (‘bracketing’)

a root. �ere is no guarantee that there is only one root within a reported in-

terval. bracketing will not narrow the chosen intervals.

�e argument method determines how fun is evaluated. Default is loop. If

method is "vectorised", fun must be wri�en such that it can be evaluated
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for a vector x (see Examples). If method is multicore, function mclapply

from package parallel is used. Further se�ings for mclapply can be passed

through the list mc.control. If multicore is chosen but the functionality is

not available (eg, currently onWindows), then methodwill be set to loop and

awarning is issued. If method is snow, function clusterApply from package

parallel is used. In this case, the argument cl must either be a cluster object

(see the documentation of clusterApply) or an integer. If an integer, a clus-

ter will be set up via makeCluster(c(rep("localhost", cl)), type =

"SOCK"), and stopCluster is called when the function is exited. If snow is

chosen but the package is not available or cl is not specified, then method

will be set to loop and a warning is issued. In case that cl is a cluster object,

stopCluster will not be called automatically.

5.1.5. Value

A numeric matrix with two columns, named lower and upper. Each row con-

tains one interval that contains at least one root. If no roots were found, the

matrix has zero rows.

5.2. Grid Search

�e function gridSearchwas added in version 0.14-0. gridSearch allows to

distribute the evaluation of the objective function through package parallel

(originally, multicore (Urbanek, 2011) and snow (Tierney et al., 2011)).

gridSearch Grid Search

5.2.1. Description

Evaluate a function for a given list of arguments.

5.2.2. Usage

gridSearch(fun, levels, ..., lower, upper, npar = 1L, n = 5L,

printDetail = TRUE,

method = NULL,

mc.control = list(), cl = NULL,

keepNames = FALSE, asList = FALSE)
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5.2.3. Arguments

fun a function of the form fun(x, ...), with x being a numeric vector or

a list

levels a list of levels for the arguments (see Examples)

... objects passed to fun

lower a numeric vector. Ignored if levels are explicitly specified.

upper a numeric vector. Ignored if levels are explicitly specified.

npar the number of parameters. Must be supplied if lower and upper are to

be expanded; see Details. Ignored when levels are explicitly specified,

or when lower/upper are used and at least one has length greater than

one. See Examples.

n the number of levels. Default is 5. Ignored if levels are explicitly specified.

printDetail print information on the number of objective function evalu-

ations

method can be loop (the default), multicore or snow. See Details.

mc.control a list containing se�ings that will be passed to mclapply if

method is multicore. Must be a list of named elements; see the docu-

mentation of mclapply in parallel.

cl default is NULL. If method snow is used, this must be a cluster object or

an integer (the number of cores).

keepNames logical: should the names of levels be kept?

asList does fun expect a list? Default is FALSE.

5.2.4. Details

A grid search can be used to find ‘good’ parameter values for a function. In

principle, a grid search has an obvious deficiency: as the length of x (the first

argument to fun) increases, the number of necessary function evaluations

grows exponentially. Note that gridSearch will not warn about an unrea-

sonable number of function evaluations, but if printDetail is TRUE it will

print the required number of function evaluations.

In practice, grid search is o�en be�er than its reputation. If a function takes

only a few parameters, it is o�en a reasonable approach to find ‘good’ param-

eter values.

�e function uses the mechanism of expand.grid to create the list of pa-

rameter combinations for which fun is evaluated; it calls lapply to evaluate

fun if method == "loop" (the default).
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If method is multicore, then function mclapply from package parallel is

used. Further se�ings for mclapply can be passed through the list mc.control.

If multicore is chosen but the functionality is not available, then method

will be set to loop and a warning is issued. If method == "snow", the func-

tion clusterApply from package parallel is used. In this case, the argument

clmust either be a cluster object (see the documentation of clusterApply)

or an integer. If an integer, a clusterwill be set up via makeCluster(c(rep("localhost",

cl)), type = "SOCK") (and stopCluster is called when the function is

exited). If snow is chosen but not available or cl is not specified, then method

will be set to loop and a warning is issued.

5.2.5. Value

A list.

minfun the minimum of fun.

minlevels the levels that give this minimum.

values a list. All the function values of fun.

levels a list. All the levels for which fun was evaluated.

We start with a simple example. We have a function of two variables, G1 and

G2:

f (G1, G2) = G1 + G2
2
. (5.1)

�is function can be computed very quickly for given G-values. To demon-

strate the use of distributed evaluation, we slow it down.

> testFun <- function(x) {

Sys.sleep(0.1) ## wasting time...

x[1L] + x[2L]^2

}

Nowwe can evaluate f for, say, 1 ≤ G1 ≤ 5 and 3 ≤ G2 ≤ 5 , with five different

levels.

> lower <- c(1, 3); upper <- 5; n <- 5L

> system.time(sol1 <- gridSearch(fun = testFun,

lower = lower, upper = upper,

n = n, printDetail = TRUE))

With those se�ings gridSearch has evaluated f for all combinations of these

levels:

> seq(from = 1, to = 5, length.out= n) ## x_1
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[1] 1 2 3 4 5

> seq(from = 3, to = 5, length.out= n) ## x_2

[1] 3.0 3.5 4.0 4.5 5.0

For the given function the minimum is at c(1,3), which is exactly what

gridSearch returns.

> sol1$minfun

[1] 10

> sol1$minlevels

[1] 1 3

To use a snow cluster, call gridSearch with arguments method and cl.

> system.time(sol2 <- gridSearch(fun = testFun,

lower = lower,

upper = upper,

n = n, printDetail = FALSE,

cl = 2L)) ## with 2 cores

> all.equal(sol1, sol2)

5.3. Integration of Gauss-type

�e functions xwGauss and changeInterval were added in version 0.17-0.

xwGauss Integration of Gauss-type

5.3.1. Description

Compute nodes and weights for Gauss integration.

5.3.2. Usage

xwGauss(n, method = "legendre")

changeInterval(nodes, weights, oldmin, oldmax, newmin, newmax)
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5.3.3. Arguments

n number of nodes

method character. default is "legendre"; also possible are "laguerre" and

"hermite"

nodes the nodes (a numeric vector)

weights the weights (a numeric vector)

oldmin the minimum of the interval (typically as tabulated)

oldmax the maximum of the interval (typically as tabulated)

newmin the desired minimum of the interval

newmax the desired maximum of the interval

5.3.4. Details

xwGauss computes nodes and weights for integration for the interval -1 to 1.

It uses the method of Golub and Welsch (1969).

changeInterval is a utility that transforms nodes and weights to an arbi-

trary interval.

5.3.5. Value

a list with two elements

weights a numeric vector

nodes a numeric vector

5.4. Option pricing

5.4.1. Vanilla options

�e functions vanillaOptionEuropean, vanillaOptionAmerican and vanillaOptionImpliedVol

were added in package version 0.25-9.

vanillaOptionEuropean Pricing Plain-Vanilla (European and

American) and Barrier Options (European)
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5.4.2. Description

Functions to calculate the theoretical prices and (some) Greeks for plain-

vanilla and barrier options.

5.4.3. Usage

vanillaOptionEuropean(S, X, tau, r, q, v, tauD = 0, D = 0,

type = "call", greeks = TRUE,

model = NULL, ...)

vanillaOptionAmerican(S, X, tau, r, q, v, tauD = 0, D = 0,

type = "call", greeks = TRUE, M = 101)

vanillaOptionImpliedVol(exercise = "european", price,

S, X, tau, r, q = 0,

tauD = 0, D = 0,

type = "call",

M = 101,

uniroot.control = list(),

uniroot.info = FALSE)

barrierOptionEuropean(S, X, H, tau, r, q = 0, v, tauD = 0, D = 0,

type = "call",

barrier.type = "downin",

rebate = 0,

greeks = FALSE,

model = NULL, ...)

5.4.4. Arguments

S spot

X strike

H barrier

tau time-to-maturity in years

r risk-free rate

q continuous dividend yield, see Details.

v variance (volatility squared)

tauD vector of times-to-dividends in years. Only dividendswith tauD greater

than zero and not greater than tau are kept.

D vector of dividends (in currency units); default is no dividends.

type call or put; default is call.
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barrier.type string: combination of up/down and in/out, such as downin

rebate currently not implemented

greeks compute Greeks? Defaults to TRUE. But see Details for American op-

tions.

model what model to use to value the option. Default is NULLwhich is equiv-

alent to bsm.

... parameters passed to pricing model

M number of time steps in the tree

exercise european (default) or american

price numeric; the observed price to be recovered through choice of volatil-

ity.

uniroot.control A list. If there are elements named interval, tol or

maxiter, these are passed to uniroot. Any other elements of the list

are ignored.

uniroot.info logical; default is FALSE. If TRUE, the function will return the

information returned by uniroot. See paragraph Value below.

5.4.5. Details

For European options the formula of Messrs Black, Scholes and Merton is

used. It can be used for equities (set q equal to the dividend yield), futures

(Black, 1976; set q equal to r), currencies (Garman and Kohlhagen, 1983; set

q equal to the foreign risk-free rate). For future-style options (e.g. options on

the German Bund future), set q and r equal to zero.

�e Greeks are provided in their raw (‘textbook’) form with only one excep-

tion: �eta is made negative. For practical use, the other Greeks are also typi-

cally adjusted: �eta is o�en divided by 365 (or some other yearly day count);

Vega and Rho are divided by 100 to give the sensitivity for one percentage-

point move in volatility/the interest rate. Raw Gamma is not much use if not

adjusted for the actual move in the underlier.

For European options the Greeks are computed through the respective an-

alytic expressions. For American options only Delta, Gamma and �eta are

computed because they can be directly obtained from the binomial tree; other

Greeks need to be computed through a finite difference (see Examples).

For the European-type options, the function understands vectors of inputs,

except for dividends. American options are priced via a Cox-Ross-Rubinstein

tree; no vectorisation is implemented here.

�e implied volatility is computed with uniroot from the stats package (the

default search interval is c(0.00001, 2); it can be changed through uniroot.control).

Dividends (D) are modelled via the escrowed-dividend model.
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5.4.6. Value

Returns the price (a numeric vector of length one) if greeks is FALSE, else

returns a list.

5.4.7. Note

If greeks is TRUE, the function will return a list with named elements (value,

delta and so on). Prior to version 0.26-3, the first element of this list was

named price.

5.4.8. Merton’s jump–diffusion model

�e function callMerton was added in package version 0.31-0.

callMerton Price of a European Call under Merton’s Jump–

Diffusion Model

5.4.9. Description

Computes the price of a European Call under Merton’s jump–diffusion model

(and the equivalent Black–Scholes–Merton volatility)

5.4.10. Usage

callMerton(S, X, tau, r, q, v, lambda, muJ, vJ, N, implVol = FALSE)

5.4.11. Arguments

S current stock price

X strike price

tau time to maturity

r risk-free rate

q dividend rate

v variance

lambda jump intensity

muJ mean jump-size
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vJ variance of log jump-size

N �e number of jumps. See Details.

implVol compute equivalent Black–Scholes–Merton volatility? Default is

FALSE.

5.4.12. Details

�e function computes the value of a plain-vanilla European call under Mer-

ton’s jump–diffusion model. Put values can be computed through put–call-

parity (see putCallParity). If implVol is TRUE, the function also com-

putes the implied volatility necessary to obtain the same price under Black–

Scholes–Merton. �e implied volatility is computed with uniroot from the

stats package.

Note that the function takes variances as inputs (not volatilities).

�e number of jumps N typically can be set 10 or 20. (Just try to increase N

and see how the results change.)

5.4.13. Value

Returns the value of the call (numeric) or, if implVol is TRUE, a list of the

value and the implied volatility.

5.4.14. Pricing with the characteristic function

�e package has always contained the function callHestoncf (see gms,

pages 520–521).�e function callCFwas added in version 0.21-0; it allows to

pass a user-defined characteristic function. As examples, characteristic func-

tions for Black–Scholes–Merton, Merton’s jump–diffusion model, the Bates

model, the Heston model and Variance-Gamma were added.

As an example, we use Black–Scholes–Merton. �e characteristic function

can be coded as follows.

> cfBSM

function(om, S, tau, r, q, v)

exp(1i * om * log(S) + 1i * tau * (r - q) * om -

0.5 * tau * v * (1i * om + om ^ 2))

<bytecode: 0x55b876681780>

<environment: namespace:NMOF>

So now we can compare the results of different pricing methods.
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> S <- 100 ## spot

> X <- 100 ## strike

> tau <- 1 ## time-to-maturity

> r <- 0.02 ## interest rate

> q <- 0.08 ## dividend rate

> v <- 0.2 ## volatility

> ## the closed-form solution

> callBSM <- function(S,X,tau,r,q,v) {

d1 <- (log(S/X) + (r - q + v^2 / 2)*tau) / (v*sqrt(tau))

d2 <- d1 - v*sqrt(tau)

S * exp(-q * tau) * pnorm(d1) - X * exp(-r * tau) * pnorm(d2)

}

> callBSM(S,X,tau,r,q,v)

[1] 5.06

> ## with the characteristic function

> callCF(cf = cfBSM, S = S, X = X, tau = tau, r = r, q = q,

v = v^2, ## variance, not vol

implVol = TRUE)

$value

[1] 5.06

$impliedVol

[1] 0.2

callCF Price a Plain-Vanilla Call with the Characteristic Function

5.4.15. Description

Price a European plain-vanilla call with the characteric function.

5.4.16. Usage

callCF(cf, S, X, tau, r, q = 0, ...,

implVol = FALSE, uniroot.control = list(), uniroot.info = FALSE)

cfBSM(om, S, tau, r, q, v)

cfMerton(om, S, tau, r, q, v, lambda, muJ, vJ)

cfBates(om, S, tau, r, q, v0, vT, rho, k, sigma, lambda, muJ, vJ)

cfHeston(om, S, tau, r, q, v0, vT, rho, k, sigma)

cfVG(om, S, tau, r, q, nu, theta, sigma)
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5.4.17. Arguments

cf characteristic function

S spot

X strike

tau time to maturity

r the interest rate

q the dividend rate

... arguments passed to the characteristic function

implVol logical: compute implied vol?

uniroot.control A list. If there are elements named interval, tol or

maxiter, these are passed to uniroot. Any other elements of the list

are ignored.

uniroot.info logical; default is FALSE. If TRUE, the function will return the

information returned by uniroot. See paragraph Value below.

om a (usually complex) argument

v0 a numeric vector of length one

vT a numeric vector of length one

v a numeric vector of length one

rho a numeric vector of length one

k a numeric vector of length one

sigma a numeric vector of length one

lambda a numeric vector of length one

muJ a numeric vector of length one

vJ a numeric vector of length one

nu a numeric vector of length one

theta a numeric vector of length one

5.4.18. Details

�e function computes the value of a plain vanilla European call under dif-

ferent models, using the representation of Bakshi/Madan. Put values can be

computed through put–call parity (see putCallParity).
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If implVol is TRUE, the functionwill compute the implied volatility necessary

to obtain the same value under Black–Scholes–Merton. �e implied volatility

is computed with uniroot from the stats package.�e default search interval

is c(0.00001, 2); it can be changed through uniroot.control.

�e function uses variances as inputs (not volatilities).

�e function is not vectorised (but see the NMOFManual for examples of how

to efficiently price more than one option at once).

5.4.19. Value

Returns the value of the call (numeric) under the respectivemodel or, if implVol

is TRUE, a list of the value and the implied volatility. (If, in addition, uniroot.info

is TRUE, the information provided by uniroot is also returned.)

5.4.20. Note

If implVol is TRUE, the functionwill return a list with elements named value

and impliedVol. Prior to version 0.26-3, the first elementwas named callPrice.

callHestoncf Price of a European Call under the Heston Model

5.4.21. Description

Computes the price of a European Call under the Heston model (and the

equivalent Black–Scholes–Merton volatility)

5.4.22. Usage

callHestoncf(S, X, tau, r, q, v0, vT, rho, k, sigma, implVol = FALSE,

...,

uniroot.control = list(), uniroot.info = FALSE)

5.4.23. Arguments

S current stock price

X strike price

tau time to maturity

r risk-free rate
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q dividend rate

v0 current variance

vT long-run variance (theta in Heston’s paper)

rho correlation between spot and variance

k speed of mean-reversion (kappa in Heston’s paper)

sigma volatility of variance. A value smaller than 0.01 is replaced with 0.01.

implVol compute equivalent Black–Scholes–Merton volatility? Default is

FALSE.

... named arguments, passed to integrate

uniroot.control A list. If there are elements named interval, tol or

maxiter, these are passed to uniroot. Other elements of the list are

ignored.

uniroot.info logical; default is FALSE. If TRUE, the function will return the

information returned by uniroot. See section Value below.

5.4.24. Details

�e function computes the value of a plain vanilla European call under the

Heston model. Put values can be computed through put–call-parity.

If implVol is TRUE, the functionwill compute the implied volatility necessary

to obtain the same price under Black–Scholes–Merton. �e implied volatility

is computed with uniroot from the stats package (the default search interval

is c(0.00001, 2); it can be changed through uniroot.control).

Note that the function takes variances as inputs (not volatilities).

5.4.25. Value

Returns the value of the call (numeric) under the Hestonmodel or, if implVol

is TRUE, a list of the value and the implied volatility. If uniroot.info is TRUE,

then instead of only the computed volatility, the complete output of uniroot

is included in the result.

5.4.26. Note

If implVol is TRUE, the functionwill return a list with elements named value

and impliedVol. Prior to version 0.26-3, the first elementwas named callPrice.
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5.5. Bond pricing

See Chapter 14 of gms. �e functions ytm and vanillaBond have been in-

cluded in the nmof package since version 0.27-1.

vanillaBond Pricing Plain-Vanilla Bonds

5.5.1. Description

Calculate the theoretical price and yield-to-maturity of a list of cashflows.

5.5.2. Usage

vanillaBond(cf, times, df, yields)

ytm(cf, times, y0 = 0.05, tol = 1e-05, maxit = 1000L, offset = 0)

duration(cf, times, yield, modified = TRUE, raw = FALSE)

convexity(cf, times, yield, raw = FALSE)

5.5.3. Arguments

cf Cashflows; a numeric vector or a matrix. If a matrix, cashflows should be

arranged in rows; times-to-payment correspond to columns.

times times-to-payment; a numeric vector

df discount factors; a numeric vector

yields optional (instead of discount factors); zero yields to compute dis-

count factor; if of length one, a flat zero curve is assumed

yield numeric vector of length one (both duration and convexity assume a

flat yield curve)

y0 starting value

tol tolerance

maxit maximum number of iterations

offset numeric: a ‘base’ rate over which to compute the yield to maturity.

See Details and Examples.

modified logical: return modified duration? (default TRUE)

raw logical: default FALSE. Compute duration/convexity as derivative of cash-

flows’ present value? Use this if you want to approximate the change

in the bond price by a Taylor series (see Examples).
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5.5.4. Details

vanillaBond computes the present value of a vector of cashflows; it may

thus be used to evaluate not just bonds but any instrument that can be reduced

to a deterministic set of cashflows.

ytm uses Newton’s method to compute the yield-to-maturity of a bond (a.k.a.

internal interest rate).When usedwith a bond, the initial outlay (i.e. the bonds

dirty price) needs be included in the vector of cashflows. For a coupon bond,

a good starting value y0 is the coupon divided by the dirty price of the bond.

An offset can be specified either as a single number or as a vector of zero

rates. See Examples.

5.5.5. Value

numeric

A plain-vanilla bond can be represented as a list of cashflows, cf, with asso-

ciated payment dates. �e bond’s theoretical price b0 is the present value of

these payments. As an example, we calculate b0 with a single yield y.

> cf <- c(5, 5, 5, 5, 5, 105) ## cashflows

> times <- 1:6 ## times to payment

> y <- 0.047 ## the "true" yield

> b0 <- sum(cf/(1 + y)^times)

> b0

[1] 102

Since y is below the coupon rate, the theoretical price should be higher than

par.

�e function vanillaBond shows a simple implementation for computing the

present value of cashflows.

> vanillaBond <- function(cf, times, df, yields) {

if (missing(times))

times <- seq_len(length(cf))

if (missing(df))

df <- 1/(1+yields)^times

drop(cf %*% df)

}

Some examples.
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> cf <- c(rep(5, 9), 105)

> vanillaBond(cf, yields = 0.05)

[1] 100

> vanillaBond(cf, yields = 0.03)

[1] 117

If only a single yield is given, the function acts as if the term structure were

flat. But we did not explicitly check for this case; R’s recycling rule will handle

this for us. Here is an example to show this more clearly:

> 2^(1:5)

[1] 2 4 8 16 32

(�e ^ operator has precedence over :which is whywe need the parentheses.)

Another example; this time we value the bond according to a Nelson–Siegel

curve. With the given parameters, the curve should be flat.

> vanillaBond(cf, 1:10, yield = NS(c(0.03,0,0,2), 1:10))

[1] 117

Back to our problem: to recover y from b0, we append b0 to the cashflow

vector, but switch its sign (since we need to buy the bond). �e is now to find

discount factors for which the sum over all cashflows (the net present value)

is just zero.

> cf <- c(5, 5, 5, 5, 5, 105) ## cashflows

> times <- 1:6 ## times to payment

> y <- 0.047 ## the "true" yield

> b0 <- sum(cf/(1 + y)^times)

> cf <- c(-b0, cf); times <- c(0, times)

> data.frame(times=times, cashflows=cf)

times cashflows

1 0 -102

2 1 5

3 2 5

4 3 5

5 4 5

6 5 5

7 6 105
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�e function ytm evaluates the derivative of the discounted cashflows ana-

lytically; ytm2 uses a finite difference.

> ytm <- function(cf, times, y0 = 0.05,

tol = 1e-05, h = 1e-05, maxit = 1000L) {

dr <- 1

for (i in seq_len(maxit)) {

y1 <- 1 + y0

g <- cf / y1 ^ times

g <- sum(g)

t1 <- times - 1

dg <- times * cf * 1/y1 ^ t1

dg <- sum(dg)

dr <- g/dg

y0 <- y0 + dr

if (abs(dr) < tol)

break

}

y0

}

> ytm2 <- function(cf, times, y0 = 0.05,

tol = 1e-04, h = 1e-08, maxit = 1000L) {

dr <- 1

for (i in seq_len(maxit)) {

y1 <- 1 + y0

g <- sum(cf/y1^times)

y1 <- y1 + h

dg <- (sum(cf/y1^times) - g)/h

dr <- g/dg

y0 <- y0 - dr

if (abs(dr) < tol)

break

}

y0

}

> system.time(for (i in 1:2000) ytm(cf, times, y0=0.06))

user system elapsed

0.042 0.000 0.043

> system.time(for (i in 1:2000) ytm2(cf, times, y0=0.06))

user system elapsed

0.04 0.00 0.04

> ytm(cf, times, y0=0.062, maxit = 5000)

[1] 0.047
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> ytm2(cf, times, y0=0.062, maxit = 5000)

[1] 0.047

�e only reason for not using a finite difference is that with extreme rates

or extremely far off starting values, the numerically-evaluated derivative is

more stable. But note that /far-off/ really means far-off: something like the

true yield is 5 percent and we use a starting value of 50 percent. (A reasonable

starting value is the coupon divided by the price.)

> (initial.value <- 5/b0)

[1] 0.0492

> ytm(cf, times, y0 = 0.7, maxit = 5000)

[1] 0.047

> ytm(cf, times, y0 = initial.value)

[1] 0.047

> ytm2(cf, times, y0 = 0.7, maxit = 5000)

[1] Inf

> ytm2(cf, times, y0 = initial.value)

[1] 0.047

5.6. Resampling

�e function resampleCwas added in version 0.24-0. It samples with replace-

ment from a number of samples (numeric vectors); the resulting vectors have

a specified rank correlation.

resampleC Resample with Specified Rank Correlation
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5.6.1. Description

Resample with replacement from a number of vectors; the sample will have

a specified rank correlation.

5.6.2. Usage

resampleC(..., size, cormat)

5.6.3. Arguments

... numeric vectors; they need not have the same length.

size an integer: the number of samples to draw

cormat the rank correlation matrix

5.6.4. Details

See Gilli, Maringer and Schumann (2011), Section 7.1.2. �e function samples

with replacement from the vectors passed through ....�e resulting samples

will have an (approximate) rank correlation as specified in cormat.

�e function uses the eigenvalue decomposition to generate the correlation;

it will not break down in case of a semidefinite matrix. If an eigenvalue of

cormat is smaller than zero, a warning is issued (but the function proceeds).

5.6.5. Value

a numeric matrix with size rows. �e columns contain the samples; hence,

there will be as many columns as vectors passed through ....

To give just one financial example when such a function could be handy:

mutual-fund prices are o�en not determined at the same point in time during

the day. Such asynchronous pricing introduces a�enuation bias, i.e. measured

correlations are too small in absolute terms. When creating return scenarios,

for example, we may then want to add our own guess for a correlation.

Truncated normals

As a numerical example, we sample from a Gaussian, a uniform, a binomial

and a truncated Gaussian. For the first three we have functions in R’ base

package (rnorm, runif and rbinom); but not for the truncated Gaussian.

A variable that is distributed as a truncated Gaussian with mean ` and vari-

ance f2 is just like normal Gaussian with the same mean and variance; but

its support is limited to a range 0 to 1.
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�e simplest way to create such variates is to sample from a Gaussian, and

then throw away those variates smaller than 0 or greater 1. But this is in-

efficient whenever the range is small. An alternative is to sample from the

inverse:

1. Transfrom 0 and 1 into 0t = (0 − `)/f and 1t = (/1/−`)/f .

2. Draw a uniform D.

3. Compute Φ−1 (Φ(0t) + D (Φ(1t) − Φ(0t))) .

Here is an example: we create 10000 variates between -1 and 4.

> mu <- 1

> sigma <- 2

> a <- -1

> b <- 4

> at <- (a - mu)/sigma

> bt <- (b - mu)/sigma

> ## "throw away" strategy

> x0 <- rnorm(10000L, mean = mu, sd = sigma)

> x0 <- x0[x0>=a & x0<=b]

> ## inverse strategy

> u <- runif(length(x0))

> z <- qnorm(pnorm(at) + u*(pnorm(bt) - pnorm(at)))

> x1 <- z * sigma + mu

We plot the results.

> par(mfrow = c(1, 2), mar = c(3, 3, 1, 1),

bty = "n", las = 1, ps = 8, tck = 0.001, mgp = c(3, 0.5, 0))

> hist(x0, xlab = "")

Histogram of x0
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> par(mfrow = c(1, 2), mar = c(3, 3, 1, 1),

bty = "n", las = 1, ps = 8, tck = 0.001, mgp = c(3, 0.5, 0))

> hist(x1, xlab = "")

Histogram of x1
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We create some other variates.

> x1 <- x1[1:750]

> x2 <- rnorm(200)

> x3 <- runif(500)

> x4 <- rbinom(100, size = 50, prob = 0.4)

Now suppose we want these to have a specified correlation.

> cormat <- array(0.5, dim = c(4, 4))

> diag(cormat) <- 1

We resample 100 times from these vectors and plot the results.

> results <- resampleC(x1 = x1, x2 = x2, x3 = x3, x4 = x4,

size = 50, cormat = cormat)

> cor(results, method = "spearman")

x1 x2 x3 x4

x1 1.000 0.574 0.555 0.563

x2 0.574 1.000 0.535 0.354

x3 0.555 0.535 1.000 0.521

x4 0.563 0.354 0.521 1.000
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> ## this function is taken from ?pairs

> panel.hist <- function(x, ...) {

usr <- par("usr"); on.exit(par(usr))

par(usr = c(usr[1:2], 0, 1.5) )

h <- hist(x, plot = FALSE)

breaks <- h$breaks; nB <- length(breaks)

y <- h$counts; y <- y/max(y)

rect(breaks[-nB], 0, breaks[-1L], y, col = grey(.5))

}

> par(mar = c(3, 3, 1, 1),

bty = "n", las = 1, ps = 8, tck = 0.001, mgp = c(3, 0.5, 0))

> pairs(results,

diag.panel = panel.hist,

gap = 0, pch = 19, cex = 0.5)
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Checking the marginal distributions, before and a�er resampling.

> par(mfrow = c(2, 4), mar = c(3, 5, 1, 1),

bty = "n", las = 1, ps = 8, tck = 0.001, mgp = c(3, 0.5, 0))

> hist(x1, xlab = "", ylab = "original")

> hist(x2, xlab = "", ylab = "")

> hist(x3, xlab = "", ylab = "")

> hist(x4, xlab = "", ylab = "")

> hist(results[ ,"x1"], xlab = "", ylab = "resampled")

> hist(results[ ,"x2"], xlab = "", ylab = "")

> hist(results[ ,"x3"], xlab = "", ylab = "")

> hist(results[ ,"x4"], xlab = "", ylab = "")
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5.7. Constant-Proportion Portfolio Insurance

(CCPI)

�e functionCPPIwas added in version 0.99-0. It simulates a simple constant-

proportion portfolio-insurance strategy for a given price path.

CPPI Constant-Proportion Portfolio Insurance

5.7.1. Description

Simulate constant-proportion portfolio insurance (CPPI) for a given price path.
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5.7.2. Usage

CPPI(S, multiplier, floor, r, tau = 1, gap = 1)

5.7.3. Arguments

S numeric: price path of risky asset

multiplier numeric

floor numeric: a percentage, should be smaller than 1

r numeric: interest rate (per time period tau)

tau numeric: time periods

gap numeric: how o�en to rebalance. 1 means every timestep, 2 means every

second timestep, and so on.

5.7.4. Details

Based on Dietmar Maringer’s MATLAB code (function CPPIgap, Listing 9.1).

See Gilli, Maringer and Schumann, 2011, chapter 9.

5.7.5. Value

A list:

V normalised value (always starts at 1)

C cushion

B bond investment

F floor

E exposure

N units of risky asset

S price path

5.8. Moving averages

5.8.1. Simple moving average

Let ~C be a univariate time series, the subscript C indicates the point in time.

�en a simple average" is defined thus:

"C =
1

:

:−1∑

8=0

~8 (5.2)
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If we compute amoving average, we do not need to recompute the whole sum

at every C .

MA Simple Moving Average

5.8.2. Description

�e function computes a moving average of a vector.

5.8.3. Usage

MA(y, order, pad = NULL)

5.8.4. Arguments

y a numeric vector

order An integer. �e order of the moving average. �e function is defined

such that order one returns y (see Examples).

pad Defaults to NULL. If not NULL, all elements of the returned moving aver-

age with position smaller than order are replaced by the value of pad.

Sensible values may be NA or 0.

5.8.5. Value

Returns a vector of length length(y).

5.8.6. Exponential moving average

�C =
~C + U~C−1 + U2~C−2 + · · ·

1 + U + U2 + · · · (5.3)

�e sum 1 + U + U2 + · · · can be simplified.

B = 1 + U + U2 + · · · und

UB = U + U2 + U3 + · · ·

�en:

B − UB = 1 oder B =
1

1 − U
.

We rewrite Euqation (5.3).

�C = (1 − U)~C + (1 − U) [U~C−1 + U2~C−2 + · · · ]
︸                                  ︷︷                                  ︸

U�C−1

(5.4)
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5.9. Monte Carlo

mc Option Pricing via Monte-Carlo Simulation

5.9.1. Description

Functions to calculate the theoretical prices of options through simulation.

5.9.2. Usage

gbm(npaths, timesteps, r, v, tau, S0,

exp.result = TRUE, antithetic = FALSE)

gbb(npaths, timesteps, S0, ST, v, tau,

log = FALSE, exp.result = TRUE)

5.9.3. Arguments

npaths the number of paths

timesteps timesteps per path

r the mean per unit of time

v the variance per unit of time

tau time

S0 initial value

ST final value of Brownian bridge

log logical: construct bridge from log series?

exp.result logical: compute exp of the final path, or return log values?

antithetic logical: if TRUE, randomnumbers for only npaths/2 are drawn,

and the random numbers are mirrored

5.9.4. Details

gbm generates sample paths of geometric Brownian motion.

gbb generates sample paths of a Brownian bridge by first creating paths of

Brownian motion W from time 0 to time T, with W 0 equal to zero. �en, at

each t, it subtracts t/T * W T and adds S0*(1-t/T)+ST*(t/T).
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5.9.5. Value

A matrix of sample paths; each column contains the price path of an asset.

Even with only a single time-step, the matrix will have two rows (the first

row is S0).

5.10. Working with rank-deficient data matrices

colSubset Full-rank Column Subset

5.10.1. Description

Select a full-rank subset of columns of a matrix.

5.10.2. Usage

colSubset(x)

5.10.3. Arguments

x a numeric matrix

5.10.4. Details

Uses qr.

5.10.5. Value

A list:

columns indices of columns

multiplier a matrix

5.11. Drawdown

drawdown Drawdown
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5.11.1. Description

Compute the drawdown of a time series.

5.11.2. Usage

drawdown(v, relative = TRUE, summary = TRUE)

5.11.3. Arguments

v a price series (a numeric vector)

relative if TRUE, maximum drawdown is chosen according to percentage

losses; else in units of v

summary if TRUE, provide maximum drawdown and time when it occured;

else return drawdown vector

5.11.4. Details

�e drawdown at position t of a time series v is the difference between the

highest peak that was reached before t and the current value. If the current

value represents a new high, the drawdown is zero.

5.11.5. Value

If summary is FALSE, a vector of the same length as v. If summary is TRUE, a

list

maximum maximum drawdown

high the max of v

high.position position of high

low the min of v

low.position position of low

5.12. Efficient frontiers

�e function mvFrontier was added in version 1.5-0.

mvFrontier Computing Mean–Variance Efficient Portfolios
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5.12.1. Description

Compute mean–variance efficient portfolios and efficient frontiers.

5.12.2. Usage

mvFrontier(m, var, wmin = 0, wmax = 1, n = 50, rf = NA,

groups = NULL, groups.wmin = NULL, groups.wmax = NULL)

mvPortfolio(m, var, min.return, wmin = 0, wmax = 1, lambda = NULL,

groups = NULL, groups.wmin = NULL, groups.wmax = NULL)

5.12.3. Arguments

m vector of expected returns

var expected variance–covariance matrix

wmin numeric: minimum weights

wmax numeric: maximum weights

n number of points on the efficient frontier

min.return minimal required return

rf risk-free rate

lambda risk–reward trade-off

groups a list of group definitions

groups.wmin a numeric vector

groups.wmax a numeric vector

5.12.4. Details

mvPortfolio computes a singlemean–variance efficient portfolio, using pack-

age quadprog. It does so by minimising portfolio variance, subject to con-

straints on minimum return and budget (weights need to sum to one), and

min/max constraints on the weights.

If _ is specified, the function ignores the min.return constraint and instead

solves the model

min
F

−_m′F + (1 − _)F ′varF

in whichF are theweights. If _ is a vector of length 2, then themodel becomes

min
F

−_1m ′F + _2F
′varF

which may be more convenient (e.g. for se�ing _1 to 1).

mvFrontier computes returns, volatilities and compositions for portfolios

along an efficient frontier. If rf is not NA, cash is included as an asset.
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5.12.5. Value

For mvPortfolio, a numeric vector of weights.

For mvFrontier, a list of three components:

return returns of portfolios

volatility volatilities of portfolios

weights A matrix of portfolio weights. Each column holds the weights for

one portfolio on the frontier. If rf is specified, an additional row is

added, providing the cash weight.

�e i-th portfolio on the frontier corresponds to the i-th elements of return

and volatility, and the i-th column of portfolio.

We given an example for the case of four assets.

�e variance-covariancematrixmay be decomposed into the (matrix) product

( times� times ( , in which ( is a diagonal matrix with the standard deviations

on its main diagonal and zeros elsewhere, and in which � is the correlation

matrix.

Assume you have the following forecasts for the assets:

> na <- 4 ## number of assets

> vols <- c(0.10, 0.15, 0.20, 0.22) ## forecast vols

> m <- c(0.06, 0.12, 0.09, 0.07) ## forecast returns

�en a covariance matrix for a constant correlation of 0.5 may be computed

in this way:

> const_cor <- function(rho, na) {

C <- array(rho, dim = c(na, na))

diag(C) <- 1

C

}

> var <- diag(vols) %*% const_cor(0.5, na) %*% diag(vols)

We call mvFrontier.

> library("NMOF")

> wmax <- 1 ## maximum holding size

> wmin <- 0.0 ## minimum holding size

> rf <- 0.02

> ## without cash

> p1 <- mvFrontier(m, var, wmin = wmin, wmax = wmax, n = 50)

> ## with cash

> p2 <- mvFrontier(m, var, wmin = wmin, wmax = wmax, n = 50, rf = rf)
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> plot(p1$volatility, p1$return, pch = 19, cex = 0.5, type = "o",

xlab = "Expected volatility",

ylab = "Expected return")

> lines(p2$volatility, p2$return, col = grey(0.5))

> abline(v = 0, h = rf)

0.10 0.11 0.12 0.13 0.14 0.15

0
.0

7
0
.1

0

Expected volatility

E
x
p
e
c
te

d
 r

e
tu

rn

5.13. Traditional portfolio-selection models

minvar Minimum-Variance Portfolios

5.13.1. Description

Compute minimum-variance portfolios, subject to lower and upper bounds

on weights.

5.13.2. Usage

minvar(var, wmin = 0, wmax = 1, method = "qp",

groups = NULL, groups.wmin = NULL, groups.wmax = NULL)

5.13.3. Arguments

var the covariance matrix: a numeric (real), symmetric matrix
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wmin numeric: a lower bound on weights. May also be a vector that holds

specific bounds for each asset.

wmax numeric: an upper bound on weights. May also be a vector that holds

specific bounds for each asset.

method character. Currently, only "qp" is supported.

groups a list of group definitions

groups.wmin a numeric vector

groups.wmax a numeric vector

5.13.4. Details

For method "qp", the function uses solve.QP from package quadprog. Be-

cause of the algorithm that solve.QP uses, var has to be positive definite

(i.e. must be of full rank).

5.13.5. Value

a numeric vector (the portfolioweights) with an a�ribute variance (the port-

folio’s variance)

minCVaR Minimum Conditional-Value-at-Risk (CVaR) Portfolios

5.13.6. Description

Compute minimum-CVaR portfolios, subject to lower and upper bounds on

weights.

5.13.7. Usage

minCVaR(R, q = 0.1, wmin = 0, wmax = 1,

min.return = NULL, m = NULL,

method = "Rglpk",

groups = NULL, groups.wmin = NULL, groups.wmax = NULL,

Rglpk.control = list())
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5.13.8. Arguments

R the scenario matrix: a numeric (real) matrix

q the Value-at-Risk level: a number between 0 and 0.5

wmin numeric: a lower bound on weights. May also be a vector that holds

specific bounds for each asset.

wmax numeric: an upper bound on weights. May also be a vector that holds

specific bounds for each asset.

m vector of expected returns. Only used if min.return is specified.

min.return minimal required return. If m is not specified, the columnmeans

of R are used.

method character. Currently, only "Rglpk" is supported.

groups a list of group definitions

groups.wmin a numeric vector

groups.wmax a numeric vector

Rglpk.control a list: se�ings passed to Rglpk solve LP

5.13.9. Details

Compute the minimum CVaR portfolio for a given scenario set. �e default

method uses the formulation as a Linear Programme, as described in Rock-

afellar/Uryasev (2000).

�e function uses Rglpk solve LP from package Rglpk.

5.13.10. Value

a numeric vector (the portfolio weights); a�ached is an a�ribute whose name

matches the method name

maxSharpe Maximum-Sharpe-Ratio/Tangency Portfolio

5.13.11. Description

ComputemaximumSharpe-ratio portfolios, subject to lower and upper bounds

on weights.
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5.13.12. Usage

maxSharpe(m, var, min.return,

wmin = -Inf, wmax = Inf, method = "qp",

groups = NULL, groups.wmin = NULL, groups.wmax = NULL)

5.13.13. Arguments

m vector of expected (excess) returns.

var the covariance matrix: a numeric (real), symmetric matrix

min.return minimumm required return.�is is a technical parameter, used

only for QP.

wmin numeric: a lower bound on weights. May also be a vector that holds

specific bounds for each asset.

wmax numeric: an upper bound on weights. May also be a vector that holds

specific bounds for each asset.

method character. Currently, only "qp" is supported.

groups a list of group definitions

groups.wmin a numeric vector

groups.wmax a numeric vector

5.13.14. Details

�e function uses solve.QP from package quadprog. Because of the algo-

rithm that solve.QP uses, var has to be positive definit (i.e. must be of full

rank).

5.13.15. Value

a numeric vector (the portfolioweights) with an a�ribute variance (the port-

folio’s variance)

trackingPortfolio Compute a Tracking Portfolio

5.13.16. Description

Computes a portfolio similar to a benchmark, e.g. for tracking the bench-

mark’s performance or identifying factors.
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5.13.17. Usage

trackingPortfolio(var, wmin = 0, wmax = 1,

method = "qp", objective = "variance", R,

ls.algo = list())

5.13.18. Arguments

var the covariance matrix: a numeric (real), symmetric matrix.�e first asset

is the benchmark.

R a matrix of returns: each colums holds the returns of one asset; each rows

holds the returns for one observation. �e first asset is the benchmark.

wmin numeric: a lower bound on weights. May also be a vector that holds

specific bounds for each asset.

wmax numeric: an upper bound on weights. May also be a vector that holds

specific bounds for each asset.

method character. Currently, "qp" and "ls" are supported.

objective character. Currently, "variance" and "sum.of.squares" are

supported.

ls.algo a list of named elements, for se�ings for method ‘ls’; see Details

5.13.19. Details

With method "qp", the function uses solve.QP from package quadprog. Be-

cause of the algorithm that solve.QP uses, var has to be positive definite

(i.e. must be of full rank).

Withmethod "ls", the function uses LSopt. Se�ings can be passed via ls.algo,

which corresponds to LSopt’s argument algo. Default se�ings are 2000 iter-

ations and printBar, printDetail set to FALSE.

R is needed only when objective is "sum.of.squares" or method is ‘ls’.

(See Examples.)

5.13.20. Value

a numeric vector (the portfolio weights)

minMAD Compute Minimum Mean–Absolute-Deviation Portfolios
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5.13.21. Description

Compute minimum mean–absolute-deviation portfolios.

5.13.22. Usage

minMAD(R, wmin = 0, wmax = 1,

min.return = NULL, m = NULL, demean = TRUE,

method = "lp",

groups = NULL, groups.wmin = NULL, groups.wmax = NULL,

Rglpk.control = list())

5.13.23. Arguments

R a matrix of return scenarios: each column represents one asset; each row

represents one scenario

wmin minimum weight

wmax maximum weight

min.return a minimum required return; ignored if NULL

m a vector of expected returns. If NULL, but min.return is not NULL, then

column means are used as expected returns.

demean logical. If TRUE, the columns of R are demeaned, corresponding to

an objective function xxxx

method string. Supported are lp and ls.

groups group definitions

groups.wmin list of vectors

groups.wmax list of vectors

Rglpk.control a list

5.13.24. Details

Compute the minimum mean–absolute-deviation portfolio for a given sce-

nario set.

�e function uses Rglpk solve LP from package Rglpk.

5.13.25. Value

a vector of portfolio weights
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5.14. Financial data

�e function French was added in version 1.5-0.

French Download Datasets from Kenneth French’s Data Library

5.14.1. Description

Download datasets from Kenneth French’s Data Library.

5.14.2. Usage

French(dest.dir,

dataset = "F-F_Research_Data_Factors_CSV.zip",

weighting = "value", frequency = "monthly",

price.series = FALSE, na.rm = FALSE,

adjust.frequency = TRUE)

5.14.3. Arguments

dest.dir character: a path to a directory

dataset a character string: the CSV file name. Also supported are the key-

words ‘market’ and ‘rf’.

weighting a character string: "equal" or "value"

frequency a character string: daily, monthly or annual. Whether it is

used or ignored depends on the particular dataset.

price.series logical: convert the returns series into prices series?

na.rm logical: remove missing values in the calculation of price series?

adjust.frequency logical: if TRUE, frequency is switched to ‘"daily"’ when

the word ‘"daily"’ appears in the dataset’s name

5.14.4. Details

�e function downloads data provided by Kenneth French at http://mba.

tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

�e download file gets a date prefix (current date in format YYYYMMDD) and is

stored in directory dest.dir. Before any download is a�empted, the func-

tion checks whether a file with today’s prefix exist in dest.dir; if yes, the

file is used.
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In the original data files, missing values are coded as -99 or similar. �ese

numeric values are replaced by NA.

Calling the function without any arguments will print the names of the sup-

ported datasets (and return them insivibly).

5.14.5. Value

A data.frame, with contents depending on the particular dataset. If the

download failes, the function evaluates to NULL.

Some examples, which make use of function plotseries.

> library("plotseries")

> library("zoo")

> series <- French("~/Downloads/French/",

"F-F_Research_Data_Factors_daily_CSV.zip",

frequency = "daily",

price.series = TRUE)

> series <- zoo(series, as.Date(row.names(series)))

> plotseries(series,

col = hcl.colors(n = 12, palette = "Dark 2"),

log.scale = TRUE,

labels = c("Market\n(excess return)",

"SMB", "HML", "RF"),

font.family = "")
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�e market (total return).

> series <- French("~/Downloads/French/",

"market",
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frequency = "daily",

price.series = TRUE)

> series <- zoo(series, as.Date(row.names(series)))

> plotseries(series,

col = hcl.colors(n = 12, palette = "Dark 2"),

log.scale = TRUE,

labels = c("Market"),

font.family = "")
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�e function Shiller was added in version 1.5-0.

Shiller Download Robert Shiller’s Data

5.14.6. Description

Download the data provided by Robert Shiller and transform them into a data

frame.

5.14.7. Usage

Shiller(dest.dir,

url = "http://www.econ.yale.edu/~shiller/data/ie_data.xls")

5.14.8. Arguments

dest.dir character: a path to a directory

url the data URL
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5.14.9. Details

�e function downloads US stock-market data provided by Robert Shiller

which he used in his book ‘Irrational Exhuberance’. Since the data are pro-

vided in Excel format, package readxl is required.

�e downloaded Excel gets a date prefix (today in format YYYYMMDD) and is

stored in directory dest.dir. Before any download is a�empted, the function

checks whether a file with today’s prefix exist in dest.dir; if yes, the file is

used.

5.14.10. Value

a data.frame:

Date end of month

Price numeric

Dividend numeric

Earnings numeric

CPI numeric

Long Rate numeric

Real Price numeric

Real Dividend numeric

Real Earnings numeric

CAPE numeric

> series <- Shiller("~/Downloads/Shiller")

> plotseries(series[, c("Price", "CAPE")],

t = as.Date(series[["Date"]]),

col = hcl.colors(n = 12, palette = "Dark 2"),

log.scale = TRUE,

returns.show = FALSE,

labels = c("Market", "CAPE"),

white.underlay = TRUE,

font.family = "")
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�e function Ritter was added in version 2.5-0.

Ritter Download Jay Ri�er’s IPO Data

5.14.11. Description

Download IPO data provided by Jay Ri�er and transform them into a data

frame.

5.14.12. Usage

Ritter(dest.dir,

url = "https://site.warrington.ufl.edu/ritter/files/IPO-age.xlsx")

5.14.13. Arguments

dest.dir character: a path to a directory

url the data URL

5.14.14. Details

�e function downloads ipo data provided by Jay R. Ri�er https://site.

warrington.ufl.edu/ritter. Since the data are provided in Excel format,

package openxlsx is required.
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�e downloaded Excel gets a date prefix (today in format YYYYMMDD) and is

stored in directory dest.dir. Before any download is a�empted, the function

checks whether a file with today’s prefix exist in dest.dir; if yes, this file is

used.

5.14.15. Value

a data.frame:

CUSIP CUSIP

Offer date a Date

Company name character: Company name

Ticker character: Ticker

Founding Founding year

PERM PERM

VC dummy VC Dummy

Rollup Rollup

Dual Dual

Post-issue shares Post-issue shares

Internet Internet

> data <- Ritter("~/Downloads/Ritter")

> ipo <- as.numeric(substr(data$"Offer date", 1, 4))

> founding <- data$Founding

> ## age at IPO

> summary(ipo - founding)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

-1 4 8 16 17 224 2206

> ## age at IPO during different time-periods

> tapply(ipo - founding, cut(ipo, 10), median, na.rm = TRUE)

(1975,1980] (1980,1984] (1984,1989] (1989,1994] (1994,1998]

9 7 7 8 8

(1998,2003] (2003,2008] (2008,2013] (2013,2017] (2017,2022]

6 9 8 10 9
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5.15. Random returns

�e function randomReturns was added in version 2.0-1.

randomReturns Create a Random Returns

5.15.1. Description

Create a matrix of random returns.

5.15.2. Usage

randomReturns(na, ns, sd, mean = 0, rho = 0, exact = FALSE)

5.15.3. Arguments

na number of assets

ns number of return scenarios

sd the standard deviation: either a single number or a vector of length na

mean the mean return: either a single number or a vector of length na

rho correlation: either a scalar (i.e. a constant pairwise correlation) or a cor-

relation matrix
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exact logical: if TRUE, return a random matrix whose column means, stan-

dard deviations and correlations match the specified values exactly (up

to numerical precision)

5.15.4. Details

�e function corresponds to the function random returns, described in the

second edition of nmof (the book).

5.15.5. Value

a numeric matrix of size na times ns

5.15.6. Note

�e function corresponds to the function random returns, described in the

second edition of nmof (the book).

5.16. Greedy Search

�e function greedySearch was added in version 2.0-1.

greedySearch Greedy Search

5.16.1. Description

Greedy Search

5.16.2. Usage

greedySearch(OF, algo, ...)

5.16.3. Arguments

OF �e objective function, to be minimised. Its first argument needs to be a

solution; ... arguments are also passed.

algo List of se�ings. See Details.

... Other variables to be passed to the objective function and to the neigh-

bourhood function. See Details.
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5.16.4. Details

A greedy search works starts at a provided initial solution (called the current

solution) and searches a defined neighbourhood for the best possible solution.

If this best neighbour is not be�er than the current solution, the search stops.

Otherwise, the best neighbour becomes the current solution, and the search

is repeated.

5.16.5. Value

A list:

xbest best solution found.

OFvalue objective function value associated with best solution.

Fmat a matrix with two columns. Fmat[ ,1L] contains the proposed solu-

tion over all iterations; Fmat[ ,2L] contains the accepted solutions.

xlist a list

initial.state the value of .Random.seed when the function was called.

x0 the initial solution

iterations the number of iterations a�er which the search stopped
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Case studies and examples
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In this part of the book, wewewill look at a number ofmore specific examples.
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6. Asset selection with GA and TA

6.1. Selection few from many assets

We first extend an example given in nmof: selecting a small number of as-

sets out of a large set of available assets such that the resulting portfolio has

minimal variance. In the book, we solved this problem with a simple Local

Search. In this chapter, we will also use �reshold Accepting (ta) and a Ge-

netic Algorithm (ga). In fact, for this problem a Local Search is just fine. But

the example serves to show how a ga could be used to solve such a model (ta

and Local Search are quite similar).

6.2. Functions

We create random data: na assets with marginal volatilities between 20% and

40%, and a constant pairwise linear correlation of 0.6 (see gms, Chapter 7).

> na <- 500L ## number of assets

> C <- array(0.6, dim = c(na,na)) ## correlation matrix

> diag(C) <- 1

> minVol <- 0.20; maxVol <- 0.40 ## covariance matrix

> Vols <- (maxVol - minVol) * runif(na) + minVol

> Sigma <- outer(Vols, Vols) * C

Next, we define the objective function and the neighbourhood function. �ey

are the same for Local Search and ta. A solution will be coded as a logical

vector. If an element of this vector is TRUE than the corresponding asset is

in the portfolio; FALSE indicates that it is excluded. �e budget constraint

is handled in the objective function: we map a given logical vector to a nu-

merical vectors that sums to unity. �e cardinality restriction is enforced in

the neighbourhood function, in which we simply reject new portfolios that

violate the constraint.

> OF <- function(x, Data) {

sx <- sum(x)

w <- rep.int(1/sx, sx)

res <- crossprod(w, Data$Sigma[x, x])

tcrossprod(w, res)

}
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�e neighbourhood function.

> neighbour <- function(xc, Data) {

xn <- xc

p <- sample.int(Data$na, Data$nn, replace = FALSE)

xn[p] <- !xn[p]

## reject infeasible solution

sumx <- sum(xn)

if ( (sumx > Data$Ksup) || (sumx < Data$Kinf) )

xc else xn

}

To evaluate OF and neighbour, we typically need other pieces of information

than just the solution itself. We collect them all in the list Data, and pass this

list to both functions.

> Data <- list(Sigma = Sigma, ## cov-matrix

Kinf = 30L, ## min cardinality

Ksup = 60L, ## max cardinality

na = na, ## number of assets

nn = 1L) ## how many assets to change per iteration

We create a random solution x0 with acceptable cardinality.

> card0 <- sample(Data$Kinf:Data$Ksup, 1L, replace = FALSE)

> assets <- sample.int(na, card0, replace = FALSE)

> x0 <- logical(na)

> x0[assets] <- TRUE

We define the se�ings for Local Search and ta and run both methods. Note

that with these se�ings, both functions use the same starting value and the

same number of objective function evaluations.

> ## Local Search

> algo <- list(x0 = x0, neighbour = neighbour, nS = 5000L,

printDetail = FALSE, printBar = FALSE)

> system.time(solLS <- LSopt(OF, algo = algo, Data = Data))

> ## Threshold Accepting

> algo$nT <- 10L; algo$nS <- trunc(algo$nS/algo$nT); algo$q <- 0.2

> system.time(solTA <- TAopt(OF, algo = algo, Data = Data))

6.3. Using Genetic Algorithms

Now we use a ga, for which we need to write a new objective function. It is

helpful in this case (and in many others) to cast the computation into matrix
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algebra notation. �is makes the maths more concise and allows to use lin-

ear algebra routines. In fact, our objective function will evaluate the whole

population in one step; thus, we have to set algo$loopOF to FALSE.

Suppose we have a portfolio vector F and a variance–covariance matrix Σ.

For single portfolio, the computation would be as follows; the result is the

scalar bo�om right.

Σ

F′

F

F′
Σ

For an equal-weight portfolio, we can set F to a vector of ones and multiply

the result by the squared weight (a scalar).

Now with a population, = [F1 F2 . . .], we could use matrix multiplication

as well. �e vector of variances is diag(, ′
Σ, ).

Σ

, ′

,

, ′
Σ

But we are not interested in the off-diagonal elements. So while the code may

be concise, the computation is inefficient. One solution, whichwe have chosen

here, is to recognise that diag(, ′
Σ, ) is equivalent to

]′

matrix
multiplication

︷︸︸︷

Σ, ,
︸      ︷︷      ︸

elementwise
multiplication

which is consise and more efficient; see the following objective function. �e

function also handles the cardinality constraint through a simple penalty.
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> OF2 <- function(x, Data) {

res <- colSums(Data$Sigma %*% x * x)

n <- colSums(x); res <- res / n^2

## penalise

p <- pmax(Data$Kinf - n, 0) + pmax(n - Data$Ksup, 0)

res + p

}

So we put all se�ings into the list algo and run GAopt. We wrap the call into

system.time to get an idea how much time the algorithm requires.

> algo <- list(nB = na, nP = 100L, nG = 500L, prob = 0.002,

printBar = FALSE, loopOF = FALSE)

> system.time(solGA <- GAopt(OF = OF2, algo = algo, Data = Data))

We should now compare the results of the three algorithms.

Local Search 0.1618

Threshold Accepting 0.1615

Genetic Algorithm 0.1608

All three algorithms give essentially the same answer. (Recall that themarginal

volatilities were between 20% and 40%, so the result is reasonable.) Just look-

ing at one outcome is not enoughwith stochastic algorithms; we should rerun

the analysis several times (we can use the function restartOpt for that).
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7. Minimising semi-variance with

DE, PS and TA

7.1. �e problem

We want to minimise the semivariance of a long–short portfolio, under the

restrictions that (i) the asset weights sum to 100% (the budget constraint),

and (ii) all asset weights are between -5% and 5% (holding size constraints).

(Later, we will add further constraints.) We show how this can be done with

Differential Evolution (de), Particle Swarm (ps) and�reshold Accepting (ta).

We start by building an artificial dataset: we create random returns with ran-

dom marginal volatilities between 20% and 40%, and induce correlation (see

gms, Chapter 7). We scale these returns so that their magnitude roughly re-

sembles daily equity returns. We store the returns in a matrix R such that

every column represents one asset.

> na <- 100L ## number of assets

> ns <- 200L ## number of scenarios

> vols <- runif(na, min = 0.2, max = 0.4) ## marginal vols

> C <- matrix(0.6, na, na); diag(C) <- 1 ## correlation matrix

> R <- rnorm(ns * na)/16 ## random returns

> dim(R) <- c(ns, na)

> R <- R %*% chol(C)

> R <- R %*% diag(vols)

�eobjective is to find a portfolio of minimal semivariance, given these return

scenarios and constraints. Semivariance can be wri�en like so:

1

=(

∑

A8<\

(\ − A8)2 . (7.1)

In words: we sum those returns below \ , and divide by =( . A typical value for

\ may be zero or a short-term deposit rate. Let there be : returns below \ ,

then

1

=(

:

:

︸︷︷︸

1

∑

A8<\

(\ − A8)2 =
:

=(
︸︷︷︸

Prob(A8 < \ )

1

:

∑

A8<\

(\ − A8)2

︸            ︷︷            ︸

conditional average

. (7.2)
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7.2. Differential Evolution

We first collect all information in a list Data. �e specific meaning of the

different variables will become clear shortly (as well as the reason for trans-

posing R).

> Data <- list(R = t(R), ## scenarios

theta = 0.005, ## return threshold

na = na, ## number of assets

ns = ns, ## number of scenarios

max = rep( 0.05, na), ## DE: vector of max. weight

min = rep(-0.05, na), ## DE: vector of min. weight

wsup = 0.05, ## TA: max weight

winf = -0.05, ## TA: min weight

eps = 0.5/100, ## TA: step size

w = 1) ## penalty weight

To demonstrate how the ingredients of the optimisation algorithm work, we

draw a random solution x0 (which very likely violates the budget constraints).

> x0 <- Data$min + runif(Data$na)*(Data$max - Data$min)

> x0[1:5]

[1] 0.00501 0.03841 -0.02749 -0.03516 0.02962

> sum(x0)

[1] -0.33

But nevertheless, we can compute semivariance for this solution step-by-step.

> temp <- R %*% x0 ## compute portfolio returns

> temp <- temp - Data$theta ## subtract return threshold

> temp <- (temp[temp < 0])^2 ## select elements below threshold

> sum(temp)/ns ## compute semivariance

[1] 6.05e-05

We put this computation into the objective function, which could look as fol-

lows.

> OF <- function(x, Data) {

Rx <- crossprod(Data$R, x)

Rx <- Rx - Data$theta

Rx <- Rx - abs(Rx)

Rx <- Rx * Rx

colSums(Rx) /(4*Data$ns)

}
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�e function is wri�en such that if we have several solutions, collected in

the columns of a matrix, we can evaluate all solutions in one step. We use

crossprod to compute the portfolio returns. crossprod(a,b) actually com-

putes t(a) %*% b, which is why we have put t(R) into the list Data.

> OF(x0, Data)

[1] 6.05e-05

> OF(cbind(x0, x0, x0), Data)

x0 x0 x0

6.05e-05 6.05e-05 6.05e-05

Now for the constraints. First, the budget constraint all.equal(sum(x0),1).

Here, we will repair the solutions. We can try two (quite similar) approaches:

we can divide x0 by sum(x0); or we can add/subtract numbers such that

sum(x0) is one.

> repair <- function(x, Data) {

myFun <- function(x)

x/sum(x)

if (is.null(dim(x)[2L]))

myFun(x) else apply(x, 2L, myFun)

}

> repair2 <- function(x, Data) {

myFun <- function(x)

x + (1 - sum(x))/Data$na

if (is.null(dim(x)[2L]))

myFun(x) else apply(x, 2L, myFun)

}

Like OF, the functions repair and repair2 work with one solution, but also

with a matrix of solutions.

> sum(x0)

[1] -0.33

> sum(repair(x0, Data))

[1] 1

> sum(repair2(x0, Data))
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[1] 1

> colSums(repair( cbind(x0, x0, x0), Data))

x0 x0 x0

1 1 1

> colSums(repair2(cbind(x0, x0, x0), Data))

x0 x0 x0

1 1 1

Note that repair2 will typically lead to smaller changes in a solution.

> summary(repair (x0, Data)-x0)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.1899 -0.0745 0.0110 0.0133 0.1148 0.2004

> summary(repair2(x0, Data)-x0)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0133 0.0133 0.0133 0.0133 0.0133 0.0133

For the maximum holding sizes we use a penalty function.

> penalty <- function(x, Data) {

up <- Data$max

lo <- Data$min

xadjU <- x - up

xadjU <- xadjU + abs(xadjU)

xadjL <- lo - x

xadjL <- xadjL + abs(xadjL)

if (is.null(dim(x)[2L]))

Data$w * (sum(xadjU) + sum(xadjL)) else

Data$w * (colSums(xadjU) + colSums(xadjL))

}

�e penalty function should evaluate to a positive number if a constraint is

violated, and to zero if not.We can test it by increasing oneweight.�eweight

Data$w allows us to control the impact of the penalty.
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> x0[1L] <- 0.30

> penalty(x0, Data)

[1] 0.5

> penalty(cbind(x0, x0, x0), Data)

x0 x0 x0

0.5 0.5 0.5

> x0[1L] <- 0

> penalty(x0, Data)

[1] 0

> penalty(cbind(x0, x0, x0), Data)

x0 x0 x0

0 0 0

We collect the se�ings of de in the list algo; see ?DEopt for details.

> algo <- list(nP = 100, ## population size

nG = 1000, ## number of generations

F = 0.25, ## step size

CR = 0.9,

min = Data$min,

max = Data$max,

repair = repair,

pen = penalty,

printBar = FALSE,

printDetail = TRUE,

loopOF = TRUE, ## do not vectorise

loopPen = TRUE, ## do not vectorise

loopRepair = TRUE) ## do not vectorise

Now we can run de. We scale the resulting objective function value into an

‘annualised’ figure in percentage points.

> system.time(sol <- DEopt(OF = OF,algo = algo,Data = Data))

> 16 * 100 * sqrt(sol$OFvalue) ## solution quality

> ## check constraints

> all(all.equal(sum(sol$xbest), 1), ## budget constraint

sol$xbest <= Data$max, ## holding size constraints

sol$xbest >= Data$min)
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We can also see if there is a meaningful difference in computing time between

looping over the solutions and evaluating them in on step – the answer, in this

case, is yes. �e difference is typically greater for smaller datasets. �e semi-

variance is cheap to compute for given returns; the main part of computing

time is actually spent on calculating the portfolio returns R %*% x.

> ## looping over the population

> algo$loopOF <- TRUE; algo$loopPen <- TRUE; algo$loopRepair <- TRUE

> t1 <- system.time(sol <- DEopt(OF = OF,algo = algo, Data = Data))

> ## evaluating the population in one step

> algo$loopOF <- FALSE; algo$loopPen <- FALSE; algo$loopRepair <- FALSE

> t2 <- system.time(sol <- DEopt(OF = OF,algo = algo, Data = Data))

> ## speedup

> t1[[3L]]/t2[[3L]]

To see if the algorithm works properly, we run a number of restarts, and then

check the solution quality of the results. For this, we can use the function

restartOpt. �e method and cl arguments specify that we use four cores to

distribute the restarts, using package snow (Tierney et al., 2011). If the package

is not available, restartOpt will fall back to its default (a loop) and issue a

warning.

> algo$printDetail <- FALSE

> restartsDE <- restartOpt(fun = DEopt, ## what function

n = 20L, ## how many restarts

OF = OF,

algo = algo,

Data = Data,

cl = 2) ## 2 cores

> ## extract best solution

> OFvaluesDE <- sapply(restartsDE, `[[`, "OFvalue")

> OFvaluesDE <- 16 * 100 * sqrt(OFvaluesDE)

> weightsDE <- sapply(restartsDE, `[[`, "xbest")

We check the objective function values associated with the restarts.

> par(bty = "n", las = 1, mar = c(3, 4, 0, 0),

ps = 8, tck = 0.001)

> plot(sort(OFvaluesDE), (seq_len(length(OFvaluesDE))) / length(OFvaluesDE),

type = "S", ylim = c(0, 1), xlab = "", ylab = "")

> mtext("OF value", side = 1, line = 2)
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Likewise, we may want to check the actual asset weights.

> par(bty = "n", las = 1, mar = c(3, 4, 0, 0),

ps = 8, tck = 0.001)

> boxplot(t(weightsDE),

outline = FALSE, boxwex = 0.4, ylim = c(-0.06,0.06))

> mtext("assets", side = 1, line = 2)

> mtext("weights", side = 2, line = 1.3, las = 1, padj = -4)
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We see that the results are quite variable, which is an indication that our

se�ings for de were not appropriate. In fact, in this case we simply did not

grant the algorithm enough iterations. (See gms, Chapter 10, and also Gilli

and Schumann, 2011, for more discussion of the stochastics of the solutions.)

To see this, we run a small experiment in which we increase the number

of iterations. We also test if there is a difference between the two different

repair-approaches.

> algo$printDetail <- FALSE; algo$nP <- 200L; restarts <- 20L

> nGs <- c(500L, 1500L, 3000L)

> lstOFvaluesDE <- list()

> for (i in 1:3) {

algo$nG <- nGs[i]

restartsDE <- restartOpt(fun = DEopt,
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n = restarts,

OF = OF,

algo = algo,

Data = Data,

cl = 8)

## extract best solution

OFvaluesDE <- sapply(restartsDE, `[[`, "OFvalue")

OFvaluesDE <- 16 * 100 * sqrt(OFvaluesDE)

lstOFvaluesDE[[i]] <- OFvaluesDE

}

> res <- simplify2array(lstOFvaluesDE)

And now with repair2.

> algo$repair <- repair2

> lstOFvaluesDE <- list()

> for (i in 1:3) {

algo$nG <- nGs[i]

restartsDE <- restartOpt(fun = DEopt,

n = restarts,

OF = OF, algo = algo, Data = Data,

cl = 8)

## extract best solution

OFvaluesDE <- sapply(restartsDE, `[[`, "OFvalue")

OFvaluesDE <- 16 * 100 * sqrt(OFvaluesDE)

lstOFvaluesDE[[i]] <- OFvaluesDE

}

> res2 <- simplify2array(lstOFvaluesDE)

We plot the results.

> allres <- as.vector(rbind(res,res2))

> xlims <- pretty(allres); xlims <- c(min(xlims), max(xlims))

> par(bty = "n", las = 1, mar = c(3, 4, 0, 0),

ps = 8, tck = 0.001)

> plot(ecdf(res[ ,3L]), xlim = xlims, cex = 0.4,

main = "", ylab = "", xlab = "")

> for (i in 1:2)

lines(ecdf(res[ ,i]), cex = 0.4)

> for (i in 1:3)

lines(ecdf(res2[ ,i]), col = "blue", cex = 0.4)
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�e blue distributions are those obtained with repair2. We see that the dis-

tributions of the realised objective function values move to the le� and be-

come steeper, ie, they become less variable. We also check the weights, again.

�ey also have become less variable. Manyweights are at the boundaries with

essentially no variation between the restarts.

> weightsDE <- sapply(restartsDE, `[[`, "xbest")

> par(bty = "n", las = 1, mar = c(3, 4, 0, 0),

ps = 8, tck = 0.001)

> boxplot(t(weightsDE),

outline = FALSE, boxwex = 0.4, ylim = c(-0.06, 0.06))

> mtext("assets", side = 1, line = 2)

> mtext("weights", side = 2, line = 1.3, las = 1, padj = -4)
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Exercise 7.1 Compare two ways to implement the constraints with DE: the first

is like described above, in which the population is actually repaired. In the alter-

native version, do not repair, but only ‘map’ infeasible solutions to feasible ones

(Maringer and Oyewumi, 2007).

7.3. Particle Swarm

�e function PSopt is very similar to DEopt; thus, we can rerun the example

almost without any changes with Particle Swarm.
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> algo <- list(nP = 100L, ## population size

nG = 1000L, ## number of generations

c1 = 0.5, ## weight for individually best solution

c2 = 1.5, ## weight for overall best solution

min = Data$min,

max = Data$max,

repair = repair, pen = penalty,

iner = 0.7, initV = 1, maxV = 0.2,

printBar = FALSE, printDetail = TRUE)

> system.time(sol <- PSopt(OF = OF,algo = algo,Data = Data))

> 16 * 100 * sqrt(sol$OFvalue) ## solution quality

> ## check constraints

> all(all.equal(sum(sol$xbest),1), ## budget constraint

sol$xbest <= Data$max,

sol$xbest >= Data$min)

With ps we can easily impose a restriction on how a solution is changed by

adjusting the velocity. We can, for instance, enforce the budget constraint by

changing the weights such that the sum of the weight changes is zero.

> changeV <- function(x, Data) {

myFun <- function(x) x - (sum(x))/Data$na

if (is.null(dim(x)[2L]))

myFun(x) else apply(x, 2L, myFun)

}

> sum(changeV(x0, Data))

[1] -2.08e-17

> colSums(changeV(cbind(x0, x0, x0), Data))

x0 x0 x0

-2.08e-17 -2.08e-17 -2.08e-17

We set up an initial population that meets the budget constraint.

> initP <- Data$min + diag(Data$max - Data$min) %*%

array(runif(length(Data$min) * algo$nP),

dim = c(length(Data$min), algo$nP))

> colSums(initP <- repair(initP,Data))[1:10] ## check

[1] 1 1 1 1 1 1 1 1 1 1

We add the function changeV and the initial population to algo.
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> algo$changeV <- changeV ## function to adjust velocity

> algo$initP <- initP ## initial population

> algo$repair <- NULL ## not needed anymore

> system.time(sol <- PSopt(OF = OF,algo = algo, Data = Data))

Particle Swarm Optimisation.

Best solution has objective function value 4.37e-05 ;

standard deviation of OF in final population is 0.0106 .

user system elapsed

3308.1 2.3 318.1

> 16 * 100 * sqrt(sol$OFvalue) ## solution quality

[1] 10.6

We check whether the results violate the constraints.

> all(all.equal(sum(sol$xbest), 1), ## budget constraint

sol$xbest <= Data$max,

sol$xbest >= Data$min)

[1] TRUE

> algo$loopOF <- FALSE; algo$loopPen <- FALSE

> algo$loopRepair <- FALSE; algo$loopChangeV <- FALSE

> system.time(sol <- PSopt(OF = OF, algo = algo, Data = Data))

Particle Swarm Optimisation.

Best solution has objective function value 4.35e-05 ;

standard deviation of OF in final population is 0.0447 .

user system elapsed

205.7 17.7 21.2

Finally, we can also run a small experiment here.

> algo$printDetail <- FALSE

> restartsPS <- restartOpt(fun = PSopt,

n = 20L,

OF = OF,

algo = algo, Data = Data,

cl = 2)

> ## extract best solution
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> OFvaluesPS <- sapply(restartsPS, `[[`, "OFvalue")

> OFvaluesPS <- 16 * 100 * sqrt(OFvaluesPS)

> par(bty = "n", las = 1,mar = c(3,4,0,0),

ps = 8, tck = 0.001)

> plot(sort(OFvaluesPS),

(seq_len(length(OFvaluesPS))) / length(OFvaluesPS),

type = "S", ylim = c(0, 1), xlab = "", ylab = "")

> mtext("OF value", side = 1, line = 2)

7.4. �reshold Accepting

Now we solve the same problem with �reshold Accepting (ta). We first de-

fine a neighbourhood function and an objective function (in fact, we could

have used the same objective function as for de before; but this one is a bit

simpler since it will never have to evaluate several solutions at once).

> Data$R <- R ## not transposed any more

> neighbourU <- function(sol, Data){

resample <- function(x, ...)

x[sample.int(length(x), ...)]

wn <- sol$w

toSell <- wn > Data$winf

toBuy <- wn < Data$wsup

i <- resample(which(toSell), size = 1L)

j <- resample(which(toBuy), size = 1L)

eps <- runif(1) * Data$eps

eps <- min(wn[i] - Data$winf, Data$wsup - wn[j], eps)

wn[i] <- wn[i] - eps

wn[j] <- wn[j] + eps

Rw <- sol$Rw + Data$R[,c(i,j)] %*% c(-eps,eps)

list(w = wn, Rw = Rw)

}

> OF <- function(x, Data) {

Rw <- x$Rw - Data$theta
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Rw <- Rw - abs(Rw)

sum(Rw*Rw) / (4*Data$ns)

}

Next we choose a random initial solution, put all the se�ings in a list algo

and run ta.

> w0 <- runif(Data$na); w0 <- w0/sum(w0)

> x0 <- list(w = w0, Rw = R %*% w0)

> algo <- list(x0 = x0,

neighbour = neighbourU,

nS = 2000L,

nT = 10L,

nD = 5000L,

q = 0.20,

printBar = FALSE,

printDetail = FALSE)

> system.time(sol2 <- TAopt(OF,algo,Data))

> 16 * 100 * sqrt(sol2$OFvalue)

Finally, we also let the algorithm run several times. We can compare the so-

lutions with those of de (in blue).

> restartsTA <- restartOpt(fun = TAopt,

n = 20L,

OF = OF,

algo = algo,

Data = Data,

cl = 2)

> OFvaluesTA <- sapply(restartsTA, `[[`, "OFvalue") ## extract best solution

> OFvaluesTA <- 16 * 100 * sqrt(OFvaluesTA)

> weightsTA <- sapply(restartsTA, `[[`, "xbest")

> par(bty = "n", las = 1,mar = c(3,4,0,0), ps = 8,

tck = 0.001, mgp = c(3, 0.5, 0))

> ## blue: DE solution with nP = 200 and nG = 2000

> xlims <- pretty(c(res2[,3], OFvaluesTA))

> plot(ecdf(res2[,3]), col = "blue", cex = 0.4,

main = "", ylab = "", xlab = "",

xlim = c(min(xlims), max(xlims)) )

> ## black: TA

> lines(ecdf(OFvaluesTA), cex = 0.4)
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8. Equal-risk contribution

In this chapter we discuss how to compute equal-risk contribution portfo-

lios – a.k.a. as risk-parity portfolios. As a benchmark, we use the functions

provided in Bernhard Pfaff’s FRAPO package.

> require("NMOF")

> require("FRAPO")

With Local Search.

> erc <- function(cov, wmin = 0, wmax = 1, method = "ls") {

fun <- function(x, Data) {

tmp <- Data$S %*% x

sd(x * tmp / c(sqrt(x %*% tmp)))

}

N <- function (w, Data) {

toSell <- which(w > Data$wmin)

toBuy <- which(w < Data$wmax)

i <- toSell[sample.int(length(toSell), size = 1L)]

j <- toBuy[sample.int(length(toBuy), size = 1L)]

eps <- Data$epsmin + runif(1L) *

(Data$epsmax-Data$epsmin) * (Data$nS-LS.info()$s)/Data$nS

eps <- min(w[i] - Data$wmin, Data$wmax - w[j], eps)

w[i] <- w[i] - eps

w[j] <- w[j] + eps

w

}

Data <- list(S = cov,

na = dim(cov)[1L],

wmin = 0,

wmax = 1,

epsmin = 0.0001,

epsmax = 0.1,

eps = 0.0005,

nS = 1000)

sol <- LSopt(fun,

list(neighbour = N,
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nS = Data$nS,

x0 = rep(1/Data$na, Data$na),

printDetail = FALSE, ## print info every 1000 steps

printBar = FALSE),

Data)

w <- sol$xbest

w

}

> set.seed(24244)

> S <- cov(fundData)

> vols <- c(0.05, 0.2)

> C <- c(1, 0,

0, 1)

> dim(C) <- c(2,2)

> erc(diag(vols) %*% C %*% diag(vols))

[1] 0.8 0.2

> vols <- c(0.05, 0.2, 0.2)

> C <- c(1, 0, 0,

0, 1, 1,

0, 1, 1)

> dim(C) <- c(3,3)

> erc(diag(vols) %*% C %*% diag(vols))

[1] 0.739 0.131 0.131

> vols <- c(0.2, 0.05, 0.05)

> C <- c(1, 0, 0,

0, 1, 1,

0, 1, 1)

> dim(C) <- c(3,3)

> erc(diag(vols) %*% C %*% diag(vols))

[1] 0.150 0.425 0.425

> vols <- c(0.2, 0.05, 0.05)

> C <- c(1, 0, 0,

0, 1, 0,

0, 0, 1)

> dim(C) <- c(3,3)

> erc(diag(vols) %*% C %*% diag(vols))

[1] 0.111 0.444 0.445

> vols <- c(rates = 0.03, bonds = 0.06,

equity = 0.12, commodities = 0.12)
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> C <- c(1, 0, 0, 0,

0, 1, 0, 0,

0, 0, 1, 0,

0, 0, 0, 1)

> dim(C) <- c(4,4)

> w <- erc(diag(vols) %*% C %*% diag(vols))

> round(100*w/sum(w))

[1] 50 25 13 13

> ## we use the dataset fundData from NMOF.

>

> require("NMOF")

> require("FRAPO")

> set.seed(24244)

> S <- cov(fundData[ ,1:50])

> ## -----------------[FRAPO]-----------------

>

> ## perc <- c(PERC(S,

> ## ## par=sol$xbest,

> ## control = list(abs.tol=1e-20, trace = 100))@weights)

> perc <- Weights(PERC(S)) ## FRAPO defines a generic Weights

Iteration: 0

pobj: 0

dobj: 2.91246

pinf: 1

dinf: 1

dgap: 51

Iteration: 1

pobj: 1.87693

dobj: 0.187281

pinf: 0.117354

dinf: 0.647111

dgap: 5.04169

Iteration: 2

pobj: 1.95823

dobj: 2.0103

pinf: 0.0288375

dinf: 0.118032

dgap: 0.271926

Iteration: 3

pobj: 1.69388

dobj: 1.88359

pinf: 0.0192786

dinf: 0.0641783
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dgap: 0.0273029

Iteration: 4

pobj: 1.35214

dobj: 1.54212

pinf: 0.0167817

dinf: 0.0397297

dgap: 0.00346372

Iteration: 5

pobj: 1.04081

dobj: 1.21749

pinf: 0.0151601

dinf: 0.0232771

dgap: 0.000647534

Iteration: 6

pobj: 0.790766

dobj: 0.947684

pinf: 0.0133079

dinf: 0.0107125

dgap: 0.000125333

Iteration: 7

pobj: 0.724945

dobj: 0.819877

pinf: 0.00803009

dinf: 0.00422406

dgap: 3.51092e-05

Iteration: 8

pobj: 0.728335

dobj: 0.766192

pinf: 0.00319755

dinf: 0.00110173

dgap: 3.5436e-06

Iteration: 9

pobj: 0.739515

dobj: 0.756324

pinf: 0.00141968

dinf: 0.000472063

dgap: 1.27035e-06

Iteration: 10

pobj: 0.748074

dobj: 0.753132

pinf: 0.00042716

dinf: 0.000130865
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dgap: 2.61754e-07

Iteration: 11

pobj: 0.751996

dobj: 0.752748

pinf: 6.35185e-05

dinf: 1.81009e-05

dgap: 2.47385e-08

Iteration: 12

pobj: 0.752685

dobj: 0.752738

pinf: 4.44726e-06

dinf: 1.25264e-06

dgap: 1.4676e-09

Iteration: 13

pobj: 0.752735

dobj: 0.752738

pinf: 2.262e-07

dinf: 6.36873e-08

dgap: 7.35877e-11

Optimal solution found.

> ## -----------------[NMOF]------------------

>

> ### --- objective function

> fun <- function(x, Data) {

tmp <- Data$S %*% x

sd(x * tmp / c(sqrt(x %*% tmp)))

}

> ### --- neighbourhood function

> N <- function (w, Data) {

toSell <- which(w > Data$wmin)

toBuy <- which(w < Data$wmax)

i <- toSell[sample.int(length(toSell), size = 1L)]

j <- toBuy[sample.int(length(toBuy), size = 1L)]

eps <- Data$epsmin + runif(1L) *

(Data$epsmax-Data$epsmin) * (Data$nS-LS.info()$s)/Data$nS

eps <- min(w[i] - Data$wmin, Data$wmax - w[j], eps)

w[i] <- w[i] - eps

w[j] <- w[j] + eps

w

}

> ### ---

> Data <- list(S = S,

na = dim(S)[[1]],

wmin = 0,
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wmax = 1,

epsmin = 0.0001,

epsmax = 0.01,

eps = 0.0005,

nS = 100000)

> ### --- run LSopt

> sol <- LSopt(fun,

list(neighbour = N,

nS = Data$nS,

x0 = rep(1/Data$na, Data$na),

printDetail = 1000, ## print info every 1000 steps

printBar = FALSE),

Data)

Local Search.

Initial solution: 0.000194

Best solution (step 1000/100000): 2.45e-05

Best solution (step 2000/100000): 1.44e-05

Best solution (step 3000/100000): 1.09e-05

Best solution (step 4000/100000): 7.5e-06

Best solution (step 5000/100000): 5.16e-06

Best solution (step 6000/100000): 4.63e-06

Best solution (step 7000/100000): 3.62e-06

Best solution (step 8000/100000): 3.39e-06

Best solution (step 9000/100000): 2.78e-06

Best solution (step 10000/100000): 2.64e-06

Best solution (step 11000/100000): 2.53e-06

Best solution (step 12000/100000): 2.5e-06

Best solution (step 13000/100000): 2.33e-06

Best solution (step 14000/100000): 2.26e-06

Best solution (step 15000/100000): 2.11e-06

Best solution (step 16000/100000): 2.11e-06

Best solution (step 17000/100000): 1.95e-06

Best solution (step 18000/100000): 1.92e-06

Best solution (step 19000/100000): 1.91e-06

Best solution (step 20000/100000): 1.64e-06

Best solution (step 21000/100000): 1.57e-06

Best solution (step 22000/100000): 1.55e-06

Best solution (step 23000/100000): 1.38e-06

Best solution (step 24000/100000): 1.38e-06

Best solution (step 25000/100000): 1.38e-06

Best solution (step 26000/100000): 1.38e-06

Best solution (step 27000/100000): 1.38e-06

Best solution (step 28000/100000): 1.27e-06

Best solution (step 29000/100000): 1.25e-06

Best solution (step 30000/100000): 1.25e-06

Best solution (step 31000/100000): 1.19e-06

Best solution (step 32000/100000): 1.19e-06

Best solution (step 33000/100000): 1.19e-06

Best solution (step 34000/100000): 1.18e-06
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Best solution (step 35000/100000): 1.18e-06

Best solution (step 36000/100000): 1.12e-06

Best solution (step 37000/100000): 1.12e-06

Best solution (step 38000/100000): 1.04e-06

Best solution (step 39000/100000): 1.04e-06

Best solution (step 40000/100000): 1.04e-06

Best solution (step 41000/100000): 1.04e-06

Best solution (step 42000/100000): 1.02e-06

Best solution (step 43000/100000): 1.01e-06

Best solution (step 44000/100000): 9.79e-07

Best solution (step 45000/100000): 9.31e-07

Best solution (step 46000/100000): 9.31e-07

Best solution (step 47000/100000): 9.31e-07

Best solution (step 48000/100000): 9.31e-07

Best solution (step 49000/100000): 8.73e-07

Best solution (step 50000/100000): 8.73e-07

Best solution (step 51000/100000): 8.73e-07

Best solution (step 52000/100000): 8.61e-07

Best solution (step 53000/100000): 8.61e-07

Best solution (step 54000/100000): 8.61e-07

Best solution (step 55000/100000): 8.61e-07

Best solution (step 56000/100000): 8.61e-07

Best solution (step 57000/100000): 8.61e-07

Best solution (step 58000/100000): 8.61e-07

Best solution (step 59000/100000): 8.61e-07

Best solution (step 60000/100000): 8.59e-07

Best solution (step 61000/100000): 8.59e-07

Best solution (step 62000/100000): 8.59e-07

Best solution (step 63000/100000): 8.59e-07

Best solution (step 64000/100000): 8.59e-07

Best solution (step 65000/100000): 8.59e-07

Best solution (step 66000/100000): 8.59e-07

Best solution (step 67000/100000): 8.59e-07

Best solution (step 68000/100000): 8.59e-07

Best solution (step 69000/100000): 8.59e-07

Best solution (step 70000/100000): 8.59e-07

Best solution (step 71000/100000): 8.59e-07

Best solution (step 72000/100000): 8.59e-07

Best solution (step 73000/100000): 8.59e-07

Best solution (step 74000/100000): 8.59e-07

Best solution (step 75000/100000): 8.59e-07

Best solution (step 76000/100000): 8.59e-07

Best solution (step 77000/100000): 8.59e-07

Best solution (step 78000/100000): 8.59e-07

Best solution (step 79000/100000): 8.59e-07

Best solution (step 80000/100000): 8.56e-07

Best solution (step 81000/100000): 8.56e-07

Best solution (step 82000/100000): 8.56e-07

Best solution (step 83000/100000): 8.53e-07
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Best solution (step 84000/100000): 8.53e-07

Best solution (step 85000/100000): 8.53e-07

Best solution (step 86000/100000): 8.37e-07

Best solution (step 87000/100000): 8.29e-07

Best solution (step 88000/100000): 8.29e-07

Best solution (step 89000/100000): 8.29e-07

Best solution (step 90000/100000): 8.29e-07

Best solution (step 91000/100000): 8.29e-07

Best solution (step 92000/100000): 8.29e-07

Best solution (step 93000/100000): 8.29e-07

Best solution (step 94000/100000): 8.22e-07

Best solution (step 95000/100000): 8.2e-07

Best solution (step 96000/100000): 8.2e-07

Best solution (step 97000/100000): 8.17e-07

Best solution (step 98000/100000): 8.17e-07

Best solution (step 99000/100000): 8.06e-07

Best solution (step 100000/100000): 8e-07

Finished.

Best solution overall: 8e-07

> w <- sol$xbest

> ### --- compare weights with FRAPO

> f <- function(x)

format(round(x, 2), nsmall = 2)

> data.frame(TA = f(w*100), FR = f(perc))

TA FR

Asset1 7.01 7.01

Asset2 1.50 1.50

Asset3 1.12 1.12

Asset4 5.07 5.07

Asset5 1.56 1.57

Asset6 0.81 0.81

Asset7 0.79 0.79

Asset8 0.81 0.81

Asset9 0.91 0.91

Asset10 2.42 2.42

Asset11 1.23 1.23

Asset12 1.91 1.91

Asset13 2.34 2.34

Asset14 2.28 2.28

Asset15 1.70 1.70

Asset16 2.04 2.05

Asset17 4.33 4.33

Asset18 0.95 0.96

Asset19 1.86 1.86

Asset20 1.00 0.99

Asset21 1.45 1.45

Asset22 1.24 1.24
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Asset23 1.10 1.10

Asset24 0.92 0.92

Asset25 2.59 2.59

Asset26 1.40 1.40

Asset27 1.36 1.37

Asset28 1.12 1.12

Asset29 1.23 1.23

Asset30 3.86 3.85

Asset31 3.25 3.24

Asset32 4.08 4.09

Asset33 2.09 2.09

Asset34 2.74 2.73

Asset35 1.73 1.73

Asset36 1.26 1.26

Asset37 2.54 2.55

Asset38 1.26 1.26

Asset39 1.04 1.04

Asset40 4.52 4.52

Asset41 2.00 2.00

Asset42 0.98 0.98

Asset43 1.63 1.63

Asset44 1.93 1.93

Asset45 0.96 0.95

Asset46 1.00 1.00

Asset47 1.22 1.21

Asset48 1.03 1.03

Asset49 1.11 1.11

Asset50 5.73 5.72

> cor(w, perc)

[1] 1

> ### --- compare OF values: lower is better

> fun(perc/100, Data) ## FRAPO

[1] 5.18e-09

> fun(w, Data) ## NMOF

[1] 8e-07

> ### --- plot

> par(mfcol = c(2,2))

> plot(mrc(w, Data$S, TRUE), ylim = c(0,1.5), ylab = "in %",

main = "Marginal risk contributions: NMOF")

> plot(mrc(perc, Data$S, TRUE), ylim = c(0,1.5), ylab = "in %",
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main = "Marginal risk contributions: FRAPO")

> plot(as.matrix(data.frame(NMOF = w*100, FRAPO = perc)),

main = "Weights")

> ## allow short positions

>

>

>

>

>

>

>

> ## intuition

> na <- 3

> ns <- 10

> R <- array(rnorm(ns*na),

dim = c(ns, na))

> vols <- seq(0.1,0.5, length.out = na)/16

> R <- R %*% diag(vols)

> apply(R,2,sd)*16

[1] 0.0927 0.2949 0.4700

> w <- rep(1/na, na)

> ctb <- R %*% diag(w)

> summary(ctb)

V1 V2 V3

Min. :-0.00327 Min. :-0.01290 Min. :-0.00815

1st Qu.:-0.00186 1st Qu.:-0.00376 1st Qu.:-0.00410

Median :-0.00024 Median :-0.00145 Median : 0.00188

Mean :-0.00035 Mean :-0.00217 Mean : 0.00243

3rd Qu.: 0.00133 3rd Qu.: 0.00218 3rd Qu.: 0.00544

Max. : 0.00195 Max. : 0.00603 Max. : 0.02636

> boxplot(ctb)

> rowSums(ctb)

[1] 0.000698 -0.010016 -0.000371 0.003781 -0.022389

[6] 0.002545 -0.014811 0.027655 0.004855 0.007193

>
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9. Objective functions,

neighbourhoods and constraints

9.1. Implementing objective functions for portfolio

optimisation

In this section we discuss how specific objective functions for portfolio selec-

tion can be implemented; emphasis is on fast computation.

Note that even if some of these functions are faster than available implemen-

tations, that is not to be read as they are “be�er”. Speed may be valuable, but

it is just one desirable property among many others, in particular, robustness

(eg, handling missing values) and flexibility (eg, a function may work on dif-

ferent kinds of inputs).

9.1.1. Data

Data will always be a return-scenario matrix of no rows and na columns.

> na <- 50

> no <- 5000

> D <- array(rnorm(na*no)*0.01, dim = c(no,na))

> w <- runif(na)

> w <- w/sum(w)

> R <- D %*% w

We will also try with the compiler package.

> require("compiler")

9.1.2. Variance

Benchmark is var (see GMS, p. 397).

> var1 <- function(R) {

n <- NROW(R)

m <- sum(R)/n

crossprod(R)/(n-1) - m^2

}

> var(R) - var1(R)
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[,1]

[1,] -2.54e-13

�e difference is purely numerical, but our implementation is not stable.

> var1 <- function(R) {

n <- NROW(R)

m <- sum(R)/n

crossprod(R)/(n - 1) - m^2

}

> var2 <- cmpfun(var1)

> runs <- 10000

> system.time(for (i in seq_len(runs))

ignore <- var(R))

user system elapsed

0.274 0.004 0.280

> system.time(for (i in seq_len(runs))

ignore <- var1(R))

user system elapsed

0.177 0.000 0.178

> system.time(for (i in seq_len(runs))

ignore <- var2(R))

user system elapsed

0.173 0.000 0.174

9.1.3. Partial moments

A straightforward implemenation could look like pm0.

> pm0 <- function(x, xp = 2, threshold = 0, lower = TRUE) {

n <- NROW(x)

x <- x - threshold

if (lower)

x <- x[x < 0] else x <- x[x > 0]

sum(x^xp)/n

}

> pm1 <- function(x, xp = 2, threshold = 0, lower = TRUE, keep.sign = FALSE)

x <- x - threshold
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if (lower)

x <- x - abs(x)

else

x <- x + abs(x)

sx <- sign(x)

x <- abs(x)

if (xp == 1L)

sum(x)/2/length(x)

else if (xp == 2L)

sum(x*x)/4/length(x)

else if (xp == 3L)

sum(x*x*x)/8/length(x)

else if (xp == 4L)

sum(x*x*x*x)/16/length(x)

else

sum(x^xp)/2^xp/length(x)

}

> pm2 <- cmpfun(pm1)

For the default se�ings, there seems li�le difference.

> pm0(R)

[1] 1.23e-06

> pm1(R)

[1] 1.23e-06

> pm2(R)

[1] 1.23e-06

> runs <- 1000

> system.time(for (i in seq_len(runs))

ignore <- pm0(R))

user system elapsed

0.058 0.012 0.070

> system.time(for (i in seq_len(runs))

ignore <- pm1(R))

user system elapsed

0.095 0.020 0.115
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> system.time(for (i in seq_len(runs))

ignore <- pm2(R))

user system elapsed

0.079 0.020 0.098

> pm0(R,2.2)

[1] NaN

> pm1(R,2.2)

[1] 3.64e-07

> pm2(R,2.2)

[1] 3.64e-07

> runs <- 1000

> system.time(for (i in seq_len(runs))

ignore <- pm0(R, 2.5))

user system elapsed

0.360 0.020 0.381

> system.time(for (i in seq_len(runs))

ignore <- pm1(R, 2.5))

user system elapsed

0.155 0.024 0.180

> system.time(for (i in seq_len(runs))

ignore <- pm2(R, 2.5))

user system elapsed

0.144 0.035 0.180

9.2. Neighbourhood functions for LSopt and TAopt

�e neighbourhood is the most important aspect of ta. Neighbourhood func-

tions have the tendency to become complicated; in particular, if we incorpo-

rate more knowledge about the problem to be solved. Nevertheless, they are

almost always built from simple building blocks (at least for data structures

like vectors or matrices). We will discuss a number of such building blocks

for different cases:
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• continuous decision variables

• continuous and integer (or categorical) parameters

• specific cases: portfolio optimisation

• minimum and maximum constraints

• ranges and 0 (eg [−5,−1] [0] [1 − 5])

9.2.1. Logical vectors

Data, and comparing vectors

A typical problem is to flip one or a few elements of a vector of logicals (eg, for

choosing a subset). As an example, we create a vector x and store its length,

which we call size.

> size <- 20L

> x <- logical(size)

> x[runif(size) > 0.5] <- TRUE

> ## store information

> Data <- list()

> Data$size <- size

We first define a function to compare logical vectors.

> compareLogicals <- function(x,y, sep = "", ## true = "1", false = "0",

mark = "^", below = TRUE) {

mark.line <- ifelse(x == y, " ", mark)

if (!below)

cat(mark.line, "\n", sep = sep)

cat(as.integer(x), "\n",

as.integer(y), "\n", sep = sep)

if (below)

cat(mark.line, "\n", sep = sep)

sxy <- sum(x != y)

if (!sxy)

cat("The vectors do not differ.\n", sep = "")

else if (sxy == 1L)

cat("The vectors differ in 1 place.\n", sep = "")

else

cat("The vectors differ in ", sum(x != y), " place(s).\n", sep = "")

invisible(x != y)

}

>
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compareLogicalswill print the vectors like 001110 and indicate differences

by a ^ . Example:

> compareLogicals(x, x) ## there should be no difference

11100101010000000011

11100101010000000011

The vectors do not differ.

But now we compare two vectors that actually do differ.

> z <- x; z[2L] <- !z[2L]

> compareLogicals(x, z)

11100101010000000011

10100101010000000011

^

The vectors differ in 1 place.

Switch elements

We want to switch = elements of a logical vector (ie, make them TRUE of they

are FALSE, or make them FALSE if they are TRUE).

> Data$n <- 5L ## how many elements to change

> neighbour <- function(x, Data) {

ii <- sample.int(Data$size, Data$n)

x[ii] <- !x[ii]

x

}

> compareLogicals(x, neighbour(x, Data))

11100101010000000011

10100100110101000011

^ ^^ ^ ^

The vectors differ in 5 place(s).

Exchange two elements

Pick one TRUE and one FALSE element, and switch both. �is way, the cardi-

nality will not be changed. (�e function requires that x has at least one TRUE

and one FALSE element.)
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> neighbour <- function(x, Data) {

## required: x must have at least one TRUE and one FALSE

Ts <- which(x)

Fs <- which(!x)

lenTs <- length(Ts)

O <- sample.int(lenTs, 1L)

I <- sample.int(Data$size - lenTs, 1L)

x[c(Fs[I], Ts[O])] <- c(TRUE, FALSE)

x

}

> compareLogicals(x, neighbour(x, Data))

11100101010000000011

11000101010010000011

^ ^

The vectors differ in 2 place(s).

9.2.2. Numeric vectors

We change all elements of the solution by adding a bit of noise.

> size <- 5L

> x0 <- runif(size)

> xTRUE <- runif(size)

> Data <- list(xTRUE = xTRUE,

step = 0.02)

> OF <- function(x, Data)

max(abs(x - Data$xTRUE))

> neighbour <- function(x, Data)

x + runif(length(Data$xTRUE))*Data$step - Data$step/2

> algo <- list(q = 0.05, nS = 1000L, nT = 10L,

neighbour = neighbour, x0 = x0,

printBar = FALSE,

printDetail = FALSE,

storeSolutions = TRUE,

storeF = TRUE)

> res <- TAopt(OF, algo = algo, Data = Data)

> res$OFvalue < 0.005

[1] TRUE

�e obvious problem: what is a good step size? We can run experiments to

find out; but even be�er is to use use knowledge about problem: use step sizes

such that changes in the objective function are meaningful, or use meaningful

changes in the decision variables.
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A multiplicative constraint

We implement a neighbourhood for a constaint 0 ∗ 1 = constant

9.2.3. Testing a neighbourhood

gms, Section 13.3.4, discuss a number of strategies to test neighbourhoods.

Random starting values and random walks

> ## N1: This neighbour enforces a budget constraint, a non-negativity

> ## constraint and a maximum holding size

>

> Data <- list(wmax = 0.22, ## the maximal weight

eps = 0.2/100, ## the step size

## resample = function(x, ...)

## x[sample.int(length(x), ...)],

na = dim(fundData)[2L],

R = fundData)

> cat("The portfolio will consist of at least ",

ceiling(1/Data$wmax), " assets.\n", sep = "")

The portfolio will consist of at least 5 assets.

> neighbour1 <- function(w, Data){

toSell <- which(w > 0)

toBuy <- which(w < Data$wmax)

i <- toSell[sample.int(length(toSell), size = 1L)]

j <- toBuy[ sample.int(length(toBuy), size = 1L)]

eps <- runif(1) * Data$eps

eps <- min(w[i], Data$wmax - w[j], eps)

w[i] <- w[i] - eps

w[j] <- w[j] + eps

w

}

> neighbour1U <- function(x, Data){

wn <- x$w

toSell <- which(wn > 0)

toBuy <- which(wn < Data$wmax)

i <- toSell[sample.int(length(toSell), size = 1L)]

j <- toBuy[ sample.int(length(toBuy), size = 1L)]

eps <- runif(1) * Data$eps

eps <- min(wn[i], Data$wmax - wn[j], eps)

wn[i] <- wn[i] - eps

wn[j] <- wn[j] + eps

Rw <- x$Rw + Data$R[ ,c(i,j)] %*% c(-eps,eps)
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list(w = wn, Rw = Rw)

}

> ## create a random solution

> makex <- function(Data) {

resample <- function(x, ...)

x[sample.int(length(x), ...)]

w0 <- numeric(Data$na)

nAssets <- resample(ceiling(1/Data$wmax):Data$na, 1L)

w0[sample(seq_len(Data$na), nAssets)] <- runif(nAssets)

w0/sum(w0)

}

> isOK <- function(w, Data) {

tooBig <- any(w > Data$wmax)

tooSmall <- any(w < 0)

sumToOne <- abs(sum(w)-1) < 1e-12

if (!tooBig && !tooSmall && sumToOne)

TRUE

else

FALSE

}

> ## TEST 1

> w0 <- makex(Data)

> x0 <- list(w = w0, Rw = fundData %*% w0)

> isOK(w0, Data)

[1] TRUE

> isOK(x0$w, Data)

[1] TRUE

> set.seed(545)

> w0 <- makex(Data)

> nTests <- 1e3

> for (i in seq(nTests)) {

w1 <- neighbour1(w0, Data)

if (isOK(w1, Data))

w0 <- w1

else

stop("error")

}

> set.seed(545)

> w0 <- makex(Data)

> x0 <- list(w = w0, Rw = fundData %*% w0)

> nTests <- 1e3

> for (i in seq(nTests)) {

x1 <- neighbour1U(x0, Data)

if (isOK(x1$w, Data))
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x0 <- x1

else

stop("error")

}

> all.equal(fundData %*% w1, x1$Rw)

[1] TRUE

> ## TEST 2: reach a target solution

> makeOF <- function(wt)

function(w0, Data)

sum(abs(wt - w0))

> wt <- makex(Data)

> OF <- makeOF(wt)

> w0 <- makex(Data)

> OF(w0, Data)

[1] 0.989

> TAsettings <- list(neighbour = neighbour1,

x0 = w0, nS = 5000, q = 0.1,

printBar = FALSE)

> res <- TAopt(OF, algo = TAsettings, Data)

Threshold Accepting

Computing thresholds ... OK

Estimated remaining running time: 1.23 secs

Running Threshold Accepting ...

Initial solution: 0.989

Finished.

Best solution overall: 0.00312

> round(head(sort(abs(res$xbest-wt), decreasing = TRUE),5),6)

[1] 0.000109 0.000077 0.000061 0.000060 0.000059

> ## N2: This long-only neighbour enforces a budget constraint, a

> ## non-negativity constraint, and a maximum holding

> ## size and a maximum cardinality.

>

> Data <- list(wmax = 0.3, ## the maximal weight

Kmax = 10, ## max cardinality

eps = 1/100, ## the step size

## resample = function(x, ...)

## x[sample.int(length(x), ...)],
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na = dim(fundData)[2L],

R = fundData)

> cat("The portfolio will consist of at least ",

ceiling(1/Data$wmax), " assets.\n", sep = "")

The portfolio will consist of at least 4 assets.

> neighbour2 <- function(w, Data){

tol <- 1e-12

J <- sum(w > tol)

if (J == Data$Kmax)

toBuy <- which(w > tol & w < Data$wmax)

else

toBuy <- which(w < Data$wmax)

toSell <- which(w > tol)

i <- toSell[sample.int(length(toSell), size = 1L)]

j <- toBuy[ sample.int(length(toBuy), size = 1L)]

eps <- runif(1) * Data$eps

eps <- min(w[i], Data$wmax - w[j], eps)

w[i] <- w[i] - eps

w[j] <- w[j] + eps

w

}

> neighbour2U <- function(x, Data){

tol <- 1e-12

w <- x$w

J <- sum(w > tol)

if (J == Data$Kmax)

toBuy <- which(w > tol & w < Data$wmax)

else

toBuy <- which(w < Data$wmax)

toSell <- which(w > tol)

i <- toSell[sample.int(length(toSell), size = 1L)]

j <- toBuy[ sample.int(length(toBuy), size = 1L)]

eps <- runif(1) * Data$eps

eps <- min(w[i], Data$wmax - w[j], eps)

w[i] <- w[i] - eps

w[j] <- w[j] + eps

Rw <- x$Rw + Data$R[ ,c(i,j)] %*% c(-eps, eps)

list(w = w, Rw = Rw)

}

> makex <- function(Data) {

w0 <- numeric(Data$na)

nAssets <- sample(ceiling(1/Data$wmax):Data$Kmax, 1L)

w0[sample(seq_len(Data$na), nAssets)] <- runif(nAssets)

w0/sum(w0)

}

> isOK <- function(w, Data) {

tooBig <- any(w > Data$wmax)
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tooMany <- sum(w > 1e-12) > Data$Kmax

sumToOne <- abs(sum(w)-1) < 1e-12

if (!tooBig && !tooMany && sumToOne)

TRUE

else

FALSE

}

> ## TEST 1

> w0 <- makex(Data)

> x0 <- list(w = w0, Rw = fundData %*% w0)

> isOK(w0, Data)

[1] TRUE

> isOK(x0$w, Data)

[1] TRUE

> set.seed(545)

> w0 <- makex(Data)

> nTests <- 1e3

> for (i in seq(nTests)) {

w1 <- neighbour2(w0, Data)

if (isOK(w1, Data))

w0 <- w1

else

stop("error")

}

> set.seed(545)

> w0 <- makex(Data)

> x0 <- list(w = w0, Rw = fundData %*% w0)

> nTests <- 1e3

> for (i in seq(nTests)) {

x1 <- neighbour2U(x0, Data)

if (isOK(x1$w, Data))

x0 <- x1

else

stop("error")

}

> all.equal(fundData %*% w1, x1$Rw)

[1] TRUE

> ## TEST 2: reach a target solution

> makeOF <- function(wt)

function(w0, Data)

sum(abs(wt - w0))

> wt <- makex(Data)
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> OF <- makeOF(wt)

> w0 <- makex(Data)

> OF(w0, Data)

[1] 1.73

> OF(wt, Data)

[1] 0

> TAsettings <- list(neighbour = neighbour2,

x0 = w0, nS = 5000, q = 0.1,

printBar = FALSE)

> res <- TAopt(OF, algo = TAsettings, Data)

Threshold Accepting

Computing thresholds ... OK

Estimated remaining running time: 1.45 secs

Running Threshold Accepting ...

Initial solution: 1.73

Finished.

Best solution overall: 0.000166

> isOK(res$xbest, Data)

[1] TRUE

> df <- data.frame(target=wt, w0 = w0, wTAopt = res$xbest)

> tmpfun <- function(x)

!all(abs(x) < 1e-14)

> df[apply(df,1,tmpfun),]

target w0 wTAopt

6 0.0000 0.1273 0.0000

18 0.0497 0.0000 0.0496

42 0.1423 0.0000 0.1424

47 0.0219 0.0000 0.0219

56 0.0000 0.1951 0.0000

65 0.0385 0.0000 0.0386

93 0.0000 0.0419 0.0000

102 0.2044 0.0000 0.2044

109 0.1386 0.1374 0.1386

113 0.0164 0.0000 0.0164

125 0.0000 0.0134 0.0000

149 0.1759 0.0000 0.1760
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159 0.2123 0.0000 0.2123

169 0.0000 0.0407 0.0000

187 0.0000 0.0310 0.0000

190 0.0000 0.2200 0.0000

197 0.0000 0.1933 0.0000

> apply(df, 2, sum)

target w0 wTAopt

1 1 1

> wt <- numeric(200)

> wt[1:4] <- c(0.3,0.3,0.3,0.1)

> OF <- makeOF(wt)

> TAsettings <- list(neighbour = neighbour2,

x0 = w0, nS = 5000, q = 0.1,

printBar = FALSE)

> res <- TAopt(OF, algo = TAsettings, Data)

Threshold Accepting

Computing thresholds ... OK

Estimated remaining running time: 1.5 secs

Running Threshold Accepting ...

Initial solution: 2

Finished.

Best solution overall: 9.71e-16

> isOK(res$xbest, Data)

[1] TRUE

> df <- data.frame(target=wt, w0 = w0, wTAopt = res$xbest)

> tmpfun <- function(x)

!all(abs(x) < 1e-14)

> df[apply(df,1,tmpfun),]

target w0 wTAopt

1 0.3 0.0000 0.3

2 0.3 0.0000 0.3

3 0.3 0.0000 0.3

4 0.1 0.0000 0.1

6 0.0 0.1273 0.0

56 0.0 0.1951 0.0

93 0.0 0.0419 0.0

109 0.0 0.1374 0.0
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125 0.0 0.0134 0.0

169 0.0 0.0407 0.0

187 0.0 0.0310 0.0

190 0.0 0.2200 0.0

197 0.0 0.1933 0.0

> apply(df, 2, sum)

target w0 wTAopt

1 1 1

> w0 <- makex(Data)

> x0 <- list(w = w0, Rw = fundData %*% w0)

> ## the N is slower

> system.time(for (i in 1:10000) neighbour2(w0, Data))

user system elapsed

0.262 0.000 0.261

> system.time(for (i in 1:10000) neighbour2U(x0, Data))

user system elapsed

0.36 0.02 0.38

> TAsettings2 <- list(neighbour = neighbour2,

x0 = w0, nS = 500, q = 0.1,

printBar = FALSE, printDetail = FALSE)

> TAsettings2U <- list(neighbour = neighbour2U,

x0 = x0, nS = 500, q = 0.1,

printBar = FALSE, printDetail = FALSE)

> ofun <- function(w, Data) {

Rw <- Data$R %*% w

crossprod(Rw)

}

> ofunU <- function(sol, Data)

crossprod(sol$Rw)

> ign <- TAopt(ofun, TAsettings2, Data)

> ign <- TAopt(ofunU, TAsettings2U, Data)

>

> ##benchmark(ign <- TAopt(ofun, TAsettings2, Data),

> ## ign <- TAopt(ofunU, TAsettings2U, Data),

> ## replications = 1, order = "relative")

Finding a particular solution

We should be able to move from a given solution to a desired solution. (See

also (Burns, 2010) on the problem of finding solutions.)
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9.2.4. Finding a feasible starting solution

9.3. Repairing or penalising solutions?

We use �reshold Accepting and compare two ways to include constraints:

through a penality and thorugh a repair function. �e particular application

will be portfolio optimisation

9.3.1. �e problem

9.3.2. Enforcing the constraint via the neighbourhood

9.3.3. Enforcing the constraint via a penalty

9.3.4. Comparing both methods

9.4. Examples

9.4.1. Absolute position size

For a 130/30 portfolio, lim must not exceed 1.6

> maxabs <- function(x, lim)

max(sum(abs(x)) - lim, 0)

9.4.2. Buy-in �resholds

> require("compiler")

> wmin <- 0.01

> wmax <- 0.10

> w <- numeric(50)

> w[1:10] <- 0.1

> step <- 0.01

> N <- function(w) {

wo <- w

## initial sell

sel <- which(w >= wmin)

i <- sel[sample.int(length(sel), size = 1)]

if (w[i] == wmin) {

eps <- wmin

w[i] <- 0
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} else {

eps <- min(runif(1)*step , w[i] - wmin)

w[i] <- w[i] - eps

}

cash <- eps

iter <- 0

while (abs(cash) > 1e-14) {

iter <- iter + 1

if (iter > 10) {

return(wo)

}

##message("cash ", cash)

if (cash > 0) { ## buy something

sel <- which(w < wmax)

i <- sel[sample.int(length(sel), size = 1)]

if (w[i] == 0) {

w[i] <- eps <- wmin

} else {

eps <- min(runif(1)*step , wmax - w[i], cash)

w[i] <- w[i] + eps

}

cash <- cash - eps

} else { ## sell something

sel <- which(w >= wmin)

i <- sel[sample.int(length(sel), size = 1)]

if (w[i] == wmin) {

eps <- wmin

w[i] <- 0

} else {

eps <- min(runif(1)*step , w[i] - wmin)

w[i] <- w[i] - eps

}

cash <- cash + eps

}

}

##message(iter)

w

}

> ##N <- cmpfun(N)

> ##w

> system.time(for (i in 1:10000) w <- N(w))

user system elapsed

0.451 0.000 0.450

>

> ## goal <- numeric(50)
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> ## goal[41:50] <- 0.1

>

> ## OF <- function(x) {

> ## tmp <- x - goal

> ## sum(tmp * tmp)

> ## }

> ## ans <- LSopt(OF, algo = list(nS = 1000000, neighbour = N, x0 = w))

> ## sum(ans$xbest > 0)

> ## ans$xbest

>

> ## ans <- numeric(10000)

> ## for (i in seq_along(ans))

> ## ans[i] <- ceiling(runif(1)*10)

>

> ## system.time(for (i in 1:10000) ignore <- ceiling(runif(5)*99))

> ## system.time(for (i in 1:10000) ignore <- sample.int(99, 5))

>
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10. Traditional portfolio selection

models

A main topic of Gilli et al. (2019) is non-standard portfolio-selection models;

see Chapters 12–14. Nevertheless, the NMOF package also offers several func-

tions that help with standard portfolio models, i.e. models that can be solved

with traditional optimisation techniques such as quadratic programming.

10.1. Minimum-variance portfolios

�e function minvar computes the minimum-variance portfolio for a given minvar

variance–covariance matrix, subject to holding-size constraints. As example

data, the variable var contains a small variance–covariance matrix, com-

puted from daily returns of five German stocks. �e data are taken from

http://enricoschumann.net/data/gilli_accuracy.html ; the code to

build the matrix is in the source file of this vigne�e.

> var

CBK.DE VOW.DE CON.DE LIN.DE MUV2.DE

CBK.DE 0.000988 -1.80e-05 3.69e-04 2.08e-04 2.63e-04

VOW.DE -0.000018 1.72e-03 8.57e-05 2.15e-05 2.84e-05

CON.DE 0.000369 8.57e-05 7.59e-04 1.94e-04 1.89e-04

LIN.DE 0.000208 2.15e-05 1.94e-04 2.66e-04 1.33e-04

MUV2.DE 0.000263 2.84e-05 1.89e-04 1.33e-04 2.59e-04

An example call, with minimum and maximum holding sizes specified.

> minvar(var, wmin = 0, wmax = 0.5)

[1] 6.94e-18 9.25e-02 4.69e-05 4.45e-01 4.62e-01

attr(,"variance")

[1] 0.000182

�e function returns the portfolio weights with an a�ribute variance that

provides the variance of this portfolio. �e holding size constraints can also

be specified as vectors, with different values for different assets.
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> minvar(var,

wmin = c(0.1, 0, 0, 0, 0), ## enforce at least 10% weight in CBK.DE

wmax = 0.5)

Use Inf to switch off weight constraints.

> minvar(var, wmin = -Inf, wmax = Inf) ## no bounds

> minvar(var, wmin = -Inf, wmax = 0.45) ## no lower bounds

> minvar(var, wmin = 0.1, wmax = Inf) ## no upper bounds

�e function also supports group constraints:

> ## group 1 consists of asset 1 only, and must have weight [0.25,0.30]

> ## group 2 consists of assets 4 and 5, and must have weight [0.10,0.20]

> minvar(var, wmin = 0, wmax = 0.40,

groups = list(1, 4:5),

groups.wmin = c(0.25, 0.1),

groups.wmax = c(0.30, 0.2))

[1] 0.250 0.217 0.333 0.149 0.051

attr(,"variance")

[1] 0.000357

Alternatively, group constraints can be specified through group names in-

stead of positions.

> ## group A consists of asset 1 only, and must have weight [0.25,0.30]

> ## group B consists of assets 4 and 5, and must have weight [0.10,0.20]

> minvar(var, wmin = 0, wmax = 0.40,

groups = c("A", "none", "none", "B", "B"),

groups.wmin = c(A = 0.25, B = 0.1),

groups.wmax = c(A = 0.30, B = 0.2))

[1] 0.250 0.217 0.333 0.149 0.051

attr(,"variance")

[1] 0.000357

10.2. Mean–variance efficient portfolios and

frontiers

�e function mvPortfolio computes a mean–variance-efficient portfolio formvPortfolio

a given variance–covariance matrix and mean-return assumption, subject to

holding-size constraints. We make up some data for four assets, with a con-

stant correlation of 0.5.
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> vols <- c(0.10, 0.15, 0.20, 0.22) ## expected vols

> m <- c(0.06, 0.12, 0.09, 0.07) ## expected mean returns

> const_cor <- function(rho, na) {

C <- array(rho, dim = c(na, na))

diag(C) <- 1

C

}

> var <- diag(vols) %*% const_cor(0.5, length(vols)) %*% diag(vols)

One way to compute a mean–variance-efficient portfolio is by requiring a

minimum return.

> mvPortfolio(m, var, min.return = 0.08, wmax = 1)

[1] 0.667 0.333 0.000 0.000

> mvPortfolio(m, var, min.return = 0.10, wmax = 1)

[1] 3.33e-01 6.67e-01 0.00e+00 3.10e-18

> mvPortfolio(m, var, min.return = 0.12, wmax = 1)

[1] -1.11e-16 1.00e+00 -5.55e-17 2.64e-17

Alternatively, we may specify a trade-off between return and variance and

minimise

−_m′F + 1

2
(1 − _)F ′varF ,

in which F are the weights. If _ is a vector of length 2, then the function

minimises

−_1m ′F + 1

2
_2F

′varF .

�e function mvFrontier traces out a whole frontier of mean–variance ef- mvFrontier

ficient portfolios. (But see the discussion on frontiers in Chapter 14 of Gilli

et al., 2019.)

> wmin <- 0

> wmax <- 1

> p1 <- mvFrontier(m, var, wmin = wmin, wmax = wmax, n = 50)

> ## with a 'risk-free' asset rf

> rf <- 0.02

> p2 <- mvFrontier(m, var, wmin = wmin, wmax = wmax, n = 50, rf = rf)

> par(las = 1, bty = "n", tck = 0.001, ps = 8)

> plot(p1$volatility, p1$return, pch = 19, cex = 0.5, type = "o",

xlab = "Expected volatility",
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ylab = "Expected return")

> lines(p2$volatility, p2$return, col = grey(0.5))

> abline(v = 0, h = rf)
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10.3. Return-based tracking portfolios

Function trackingPortfolio computes a portfolio that is close to anothertrackingPortfolio

portfolio in the mean-square/variance sense. �e function to be minimised is

determined by argument objective: supported are variance (the default)

or sum.of.squares.

> ns <- 120

> R <- randomReturns(na = 1 + 10, ## first asset is the benchmark

ns = ns,

sd = 0.03,

mean = 0.005,

rho = 0.7)

> var <- cov(R)

> trackingPortfolio(var, wmax = 0.4)

[1] 1.53e-01 1.72e-01 3.47e-18 9.64e-02 1.07e-01 1.61e-01

[7] 9.50e-02 1.64e-01 2.48e-02 2.65e-02

10.4. Minimum-Absolute-Deviation (MAD)

portfolios

Assume a matrix ' of returns, with =A columns (one for each asset) and =S
rows (one row for each scenario). For given portfolio weightsF , we can com-
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pute the portfolio returns as 'F . A bare-bones model could then be the fol-

lowing:

min
F

mean(|'F |) (10.1)

subject to

F ′] = 1 (10.2)

[

1
︸    ︷︷    ︸

U

0 · · · 0
︸        ︷︷        ︸

G

1

(1−V )=S
· · · 1

(1−V )=S

︸                        ︷︷                        ︸

D

]

10.5. Minimum-Expected-Shortfall portfolios

�e function minCVaR computes a portfolio that minimises conditional Value- minCVaR

at-Risk; its default method is the LP approach described in Rockafellar and

Uryasev (2000). See Minimising Conditional Value-at-Risk (CVaR) (http://

enricoschumann.net/notes/minimising-conditional-var.html) for

more details

> ns <- 5000 ## number of scenarios

> na <- 20 ## nunber of assets

> R <- randomReturns(na, ns, sd = 0.01, rho = 0.5)

> sol <- minCVaR(R, q = 0.1)
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11. Fitting yield curves with

Differential Evolution

�e material in this section was taken from the vigne�e ‘Fi�ing the Nel-

son–Siegel–Svensson model with Differential Evolution’ because the exam-

ples would run several minutes (at least they did in 2012 or so).

11.1. Fitting the Nelson–Siegel–Svensson model to

given bond prices

A bond is a list of payment dates (given a valuation date, we can translate

them into times-to-payment) and associated payments.

> makeCashFlows <- function(coupon, T) {

t1 <- T - floor(T) ## time to first coupon

tm <- seq(ifelse(t1 > 1e-5, t1, 1), ## 1e-5 is less than a calendar day

T,

by = 1)

cf <- rep.int(coupon, length(tm))

cf[length(cf)] <- cf[length(cf)] + 100

list(cf = cf, tm = tm)

}

> makeCashFlows(3, 10.2)

Suppose we are given the following set of bonds.

> cf1 <- c(rep(5.75, 8), 105.75); tm1 <- 0:8 + 0.5

> cf2 <- c(rep(4.25, 17), 104.25); tm2 <- 1:18

> cf3 <- c(3.5, 103.5); tm3 <- 0:1 + 0.5

> cf4 <- c(rep(3.00, 15), 103.00); tm4 <- 1:16

> cf5 <- c(rep(3.25, 11), 103.25); tm5 <- 0:11 + 0.5

> cf6 <- c(rep(5.75, 17), 105.75); tm6 <- 0:17 + 0.5

> cf7 <- c(rep(3.50, 14), 103.50); tm7 <- 1:15

> cf8 <- c(rep(5.00, 8), 105.00); tm8 <- 0:8 + 0.5

> cf9 <- 105; tm9 <- 1

> cf10 <- c(rep(3.00, 12), 103.00); tm10 <- 0:12 + 0.5

> cf11 <- c(rep(2.50, 7), 102.50); tm11 <- 1:8

> cf12 <- c(rep(4.00, 10), 104.00); tm12 <- 1:11

> cf13 <- c(rep(3.75, 18), 103.75); tm13 <- 0:18 + 0.5

> cf14 <- c(rep(4.00, 17), 104.00); tm14 <- 1:18
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> cf15 <- c(rep(2.25, 8), 102.25); tm15 <- 0:8 + 0.5

> cf16 <- c(rep(4.00, 6), 104.00); tm16 <- 1:7

> cf17 <- c(rep(2.25, 12), 102.25); tm17 <- 1:13

> cf18 <- c(rep(4.50, 19), 104.50); tm18 <- 0:19 + 0.5

> cf19 <- c(rep(2.25, 7), 102.25); tm19 <- 1:8

> cf20 <- c(rep(3.00, 14), 103.00); tm20 <- 1:15

We put all cash flows into a matrix cfMatrix, such that one bond is one

column, and one row corresponds to one payment date.

> cfList <- list( cf1, cf2, cf3, cf4, cf5, cf6, cf7, cf8, cf9,cf10,

cf11,cf12,cf13,cf14,cf15,cf16,cf17,cf18,cf19,cf20)

> tmList <- list( tm1, tm2, tm3, tm4, tm5, tm6, tm7, tm8, tm9,tm10,

tm11,tm12,tm13,tm14,tm15,tm16,tm17,tm18,tm19,tm20)

> tm <- unlist(tmList, use.names = FALSE)

> tm <- sort(unique(tm))

> nR <- length(tm)

> nC <- length(cfList)

> cfMatrix <- array(0, dim = c(nR, nC))

> for(j in seq(nC))

cfMatrix[tm %in% tmList[[j]], j] <- cfList[[j]]

> rownames(cfMatrix) <- tm

> cfMatrix[1:10, 1:10]

Supposewe have zero rates for all maturities (ie, one for each rowof cfMatrix),

then we can transform this vector of rates into discount factors. Premultiply-

ing cfMatrix by the row vector of discount factors then gives us a row vector

of bond prices.

> betaTRUE <- c(5,-2,1,10,1,3)

> yM <- NSS(betaTRUE,tm)

> diFa <- 1 / ( (1 + yM/100)^tm )

> bM <- diFa %*% cfMatrix

So, with a vector of ‘true’ bond prices bm, we can set up DE.

> Data <- list(bM = bM, tm = tm, cfMatrix = cfMatrix, model = NSS,

ww = 1,

min = c( 0,-15,-30,-30,0 ,2.5),

max = c(15, 30, 30, 30,2.5,5 ))

�e objective function takes the path that we just saw: given parameters for

the NSS model, it computes zero rates, and transforms these into discount

factors. Given the matrix cfMatrix, it then computes theoretical bond prices,

and compares these with the given prices bm. As the optimisation criterion,

we use the maximum absolute difference.
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> OF2 <- function(param, Data) {

tm <- Data$tm

bM <- Data$bM

cfMatrix <- Data$cfMatrix

diFa <- 1 / ((1 + Data$model(param, tm)/100)^tm)

b <- diFa %*% cfMatrix

aux <- b - bM; aux <- max(abs(aux))

if (is.na(aux)) aux <- 1e10

aux

}

We will enforce the constraints with a penalty.

> penalty <- function(mP, Data) {

minV <- Data$min

maxV <- Data$max

ww <- Data$ww

## if larger than maxV, element in A is positiv

A <- mP - as.vector(maxV)

A <- A + abs(A)

## if smaller than minV, element in B is positiv

B <- as.vector(minV) - mP

B <- B + abs(B)

## beta 1 + beta2 > 0

C <- ww*((mP[1L, ] + mP[2L, ]) - abs(mP[1L, ] + mP[2L, ]))

A <- ww * colSums(A + B) - C

A

}

We set up the parameters and run DE.

> algo <- list(nP = 200L,

nG = 1000L,

F = 0.50,

CR = 0.99,

min = c( 0,-15,-30,-30,0 ,2.5),

max = c(15, 30, 30, 30,2.5,5 ),

pen = penalty,

repair = NULL,

loopOF = TRUE,

loopPen = FALSE,

loopRepair = FALSE,

printBar = FALSE,

printDetail = FALSE,

storeF = FALSE)

> sol <- DEopt(OF = OF2, algo = algo, Data = Data)

Note that now the objective function value (the difference in bond prices) does

not correspond to the yield difference anymore. It is instructive to compare

them nevertheless.
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> max( abs(Data$model(sol$xbest, tm) - Data$model(betaTRUE, tm)))

[1] 2.4e-14

> sol$OFvalue

[1] 0

. . . and we compare with nlminb.

> s0 <- algo$min + (algo$max - algo$min) * runif(length(algo$min))

> system.time(sol2 <- nlminb(s0,OF2,Data = Data,

lower = Data$min,

upper = Data$max,

control = list(eval.max = 50000,

iter.max = 50000)))

> max(abs(Data$model(sol2$par,tm) - Data$model(betaTRUE,tm)))

> sol2$objective

> par(ps = 8, bty = "n", las = 1, tck = 0.01,

mgp = c(3, 0.5, 0), mar = c(4, 4, 1, 1))

> plot(tm, yM, xlab = "maturities in years", ylab = "yields in %")

> lines(tm,Data$model(sol$xbest,tm), col = "blue")

> lines(tm,Data$model(sol2$par,tm), col = "darkgreen", lty = 2)

> legend(x = "bottom", legend = c("true yields", "DE", "nlminb"),

col = c("black", "blue", "darkgreen"),

pch = c(1, NA, NA), lty = c(0, 1, 2))

We can check the price errors.

> diFa <- 1 / ((1 + NSS(sol$xbest,tm)/100)^tm)

> b <- diFa %*% cfMatrix

> b - bM
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[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0 0 0 0 0 0 0 0 0 0

[,11] [,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19]

[1,] 0 0 0 0 0 0 0 0 0

[,20]

[1,] 0

We can also plot the rate errors against time-to-payment.

> par(ps = 8, bty = "n", las = 1, tck = 0.01,

mgp = c(3, 0.5, 0), mar = c(4, 4, 1, 1))

> plot(tm, NSS(sol$xbest,tm) - NSS(betaTRUE,tm),

xlab = "maturities in years", ylab = "yield error in %")
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�ese apparently systematic (albeit small) errors are less visible when we plot

price errors against time-to-maturity (see the book for a discussion).

> par(ps = 8, bty = "n", las = 1, tck = 0.01,

mgp = c(3, 0.5, 0), mar = c(4, 4, 1, 1))

> plot(as.numeric(unlist(lapply(tmList, max))), as.vector(b - bM),

xlab = "maturities in years", ylab = "price error in %")
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11.1.1. More vectorisation

We actually vectorise a bit more. We did like this to obtain the bond prices

for one set of V-coefficients.

> beta <- c(5,-2,1,10,1,3)

> yM <- NSS(beta,tm)

> diFa <- 1 / ( (1 + yM/100)^tm )

> b <- diFa %*% cfMatrix

But we can actually save a number of steps.

> B <- cbind(c(5,-2,1,10,1,3), c(4,-2,1,10,1,3))

> Y <- array(0, dim = c(length(tm), ncol(B)))

> for (i in 1:ncol(Y))

Y[ ,i] <- NSS(B[ ,i], tm)

> D <- 1/((1+Y/100)^tm)

> t(cfMatrix) %*% D - as.vector(b)

[,1] [,2]

[1,] 0.00e+00 5.882

[2,] -1.42e-14 9.112

[3,] 0.00e+00 1.373

[4,] -7.11e-15 7.648

[5,] 0.00e+00 6.386

[6,] -1.42e-14 10.060

[7,] 0.00e+00 7.666

[8,] -1.42e-14 5.692

[9,] 0.00e+00 0.955

[10,] 0.00e+00 6.617

[11,] 0.00e+00 4.865

[12,] 0.00e+00 6.483

[13,] 0.00e+00 8.876

[14,] 0.00e+00 8.921

[15,] 0.00e+00 4.995

[16,] 0.00e+00 4.745

[17,] 0.00e+00 6.414

[18,] 0.00e+00 9.788

[19,] 0.00e+00 4.808

[20,] 0.00e+00 7.372

11.2. Fitting the NSS model to given

yields-to-maturity

We will need the function compYield; it converts cash flows and times-to-

payment into present values, and those present values into yields-to-maturities.
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�e function fy computes the present value of vector of cash flows cf at times

tm.

> fy <- function(ytm, cf, tm)

sum( cf / ( (1 + ytm)^tm ) )

> compYield <- function(cf, tm, guess = NULL) {

logik <- cf != 0

cf <- cf[logik]

tm <- tm[logik]

if (is.null(guess)) {ytm <- 0.05} else {ytm <- guess}

h <- 1e-8; dF <- 1; ci <- 0

while (abs(dF) > 1e-5) {

ci <- ci + 1; if (ci > 5) break

FF <- fy(ytm, cf, tm)

dFF <- (fy(ytm + h, cf, tm) - FF) / h

dF <- FF / dFF

ytm <- ytm - dF

}

if (ytm < 0)

ytm <- 0.99

ytm

}

�e objective function, OF3, looks as follows.

> OF3 <- function(param, Data) {

tm <- Data$tm

rM <- Data$rM

cfMatrix<- Data$cfMatrix

nB <- dim(cfMatrix)[2L]

zrates <- Data$model(param,tm); aux <- 1e10

if ( all(zrates > 0,

!is.na(zrates))

) {

diFa <- 1 / ((1 + zrates/100)^tm)

b <- diFa %*% cfMatrix

r <- numeric(nB)

if ( all(!is.na(b),

diFa < 1,

diFa > 0,

b > 1)

) {

for (bb in 1:nB) {

r[bb] <- compYield(c(-b[bb], cfMatrix[ ,bb]), c(0,tm))

}

aux <- abs(r - rM)

aux <- sum(aux)

}
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}

aux

}

So the game plan is as follows: we compute prices b as in the last section, but

thenwe convert them into yields-to-maturity rwith the function compYield.

�e objective function evaluates the discrepancy between the market yields-

to-maturity rM and our model yields r. We start by defining the ‘true’ rM.

> betaTRUE <- c(5,-2,1,10,1,3)

> yM <- NSS(betaTRUE, tm)

> diFa <- 1 / ( (1 + yM/100)^tm )

> bM <- diFa %*% cfMatrix

> rM <- apply(rbind(-bM, cfMatrix), 2, compYield, c(0, tm))

We set up Data and algo.

> Data <- list(rM = rM, tm = tm,

cfMatrix = cfMatrix,

model = NSS,

min = c( 0,-15,-30,-30,0 ,2.5),

max = c(15, 30, 30, 30,2.5,5 ),

ww = 0.1,

fy = fy)

> algo <- list(nP = 100L,

nG = 1000L,

F = 0.50,

CR = 0.99,

min = c( 0,-15,-30,-30,0 ,2.5),

max = c(15, 30, 30, 30,2.5,5 ),

pen = penalty,

repair = NULL,

loopOF = TRUE,

loopPen = FALSE,

loopRepair = FALSE,

printBar = FALSE,

printDetail = FALSE)

> sol <- DEopt(OF = OF3, algo = algo, Data = Data)

> max(abs(Data$model(sol$xbest,tm) - Data$model(betaTRUE,tm)))

> sol$OFvalue

With nlminb:
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> s0 <- algo$min + (algo$max - algo$min) * runif(length(algo$min))

> sol2 <- nlminb(s0, OF3, Data = Data,

lower = algo$min,

upper = algo$max,

control = list(eval.max = 50000L,

iter.max = 50000L))

> max(abs(Data$model(sol2$par,tm) - Data$model(betaTRUE,tm)))

> sol2$objective

> par(ps = 8, bty = "n", las = 1, tck = 0.01,

mgp = c(3, 0.5, 0), mar = c(4, 4, 1, 1))

> plot(tm, yM, xlab = "maturities in years", ylab = "yields in %")

> lines(tm,Data$model(sol$xbest,tm), col = "blue")

> lines(tm,Data$model(sol2$par,tm), col = "darkgreen", lty = 2)

> legend(x = "bottom", legend = c("true yields","DE","nlminb"),

col = c("black", "blue", "darkgreen"),

pch = c(1, NA, NA), lty = c(0,1,2))

0 5 10 15 20

4.5

5.0

5.5

6.0

6.5

7.0

7.5

maturities in years

y
ie

ld
s
 i
n
 %

true yields

DE

nlminb

Compare the recovered parameters.

> betaTRUE

[1] 5 -2 1 10 1 3

> round(sol$xbest,3)

[1] 5.004 -1.329 -2.138 10.101 0.352 2.983

While the returned OF value will typically be acceptable, we need many more

iterations to have the parameters converge. But compare the fi�ed yield curve:

the fi�ed yields are generally fine. If you need more precision, just increase

the number of generations (and possibly adjust the tolerance in the while

condition in function compYield).
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12. Model selection with �reshold

Accepting

We load the package and set a seed.

> require("NMOF")

> set.seed(94679)

12.1. Linear models

In this section we do a simple model selection for a linear regression: I thank Victor Bystrov for
comments on an earlier
(MATLAB) version of this
example.

out of

? available regressors, select a subset such that a given selection criterion is

minimised. We start with a function randomData; it creates a dataset X of p

available regressors with n observations. A number k of these regressors are

the ‘true’ regressors, and they define a response variable y:

~ = -KV + Bn (12.1)

�e variable K is the set of true regressors (ie, k == length(K)); thus,-K are

those columns of X that represent the true regressors. �e number ss scales

the residuals.

> randomData <- function(p = 200L, ## number of available regressors

n = 200L, ## number of observations

maxReg = 10L, ## max. number of included regressors

s = 1, ## standard deviation of residuals

constant = TRUE ) {

X <- array(rnorm(n * p), dim = c(n, p))

if (constant)

X[ ,1L] <- 1

k <- sample.int(maxReg, 1L) ## the number of true regressors

K <- sort(sample.int(p, k)) ## the set of true regressors

betatrue <- rnorm(k) ## the true coefficients

## the response variable y

y <- X[ ,K] %*% as.matrix(betatrue) + rnorm(n, sd = s)

list(X = X, y = y, betatrue = betatrue, K = K, n = n, p = p)

}
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We create a random dataset.

> rD <- randomData(p = 500L, n = 200L, s = 1,

constant = TRUE, maxReg = 10L)

We put all the data in a list called Data.

> Data <- list(X = rD$X,

y = rD$y,

n = rD$n,

p = rD$p,

maxk = 30L, ## maximum number of regressors included in model

lognn = log(rD$n)/rD$n)

Next, we compute a random solution x0.

> x0 <- logical(Data$p)

> temp <- sample.int(Data$maxk, 1L)

> temp <- sample.int(Data$p, temp)

> x0[temp] <- TRUE

Such a solution is a logical vector of length p which can be used to subset the

columns of X. Clearly, x0 is not going to be a particularly good solution. But

it will help us to test the code and demonstrate how it works.

�e true regressors. . .

> rD$K

[1] 61 209 243 408 433 463

. . . and the random solution.

> which(x0)

[1] 17 26 31 44 145 176 193 211 273 275 281 284 298 342

[15] 390 396 397 427

12.2. Fast Least Squares

Any selection rule for a model will use the residuals of the fi�ed model as

an ingredient. �us, given a potential solution, we will have to compute a

fit. Here we use Least Squares. Typically we would use lm for this. But lm

computes a lot of things that we actually do not need: we only need the fit-

ted coefficients to compute the residuals. Hence, we can use qr or qr.solve

directly. As a test, we compute the coefficients for the random solution x0.
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> result1 <- lm(Data$y ~ -1 + Data$X[ ,x0])

> result2 <- qr.solve(Data$X[ ,x0], Data$y)

> ## ... coefficients should be the same

> all.equal(as.numeric(coef(result1)), as.numeric(result2))

[1] TRUE

A timing test.

> require("rbenchmark")

> benchmark(lm(Data$y ~ -1 + Data$X[ ,x0]),

qr.solve(Data$X[ ,x0], Data$y),

columns = c("test", "elapsed", "relative"),

order = "test",

replications = 1000L)

12.3. Selection criterion

Now, for the actual selection criterion. We will use the Schwarz criterion,

which is (for a linear model) given by

log

(

residuals′residuals

=

)

+ log(=) × number of regressors

=
; (12.2)

see for instance Johnston and DiNardo (1997). We put this computation in the

objective function OF.

> OF <- function(x, Data) {

q <- qr(Data$X[ ,x])

e <- qr.resid(q, Data$y)

log(crossprod(e)/Data$n) + sum(x) * Data$lognn

}

With the random solution.

> OF(x0, Data)

[,1]

[1,] 2.6

�e final ingredient that we need is a neighbourhood function. It randomly

chooses one element of a solution and switches its value. We reject solutions

that include no or more than Data$maxk regressors.
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> neighbour <- function(xc, Data) {

xn <- xc

ex <- sample.int(Data$p, 1L)

xn[ex] <- !xn[ex]

sumx <- sum(xn)

if ( sumx < 1L || (sumx > Data$maxk) )

xc else xn

}

> OF(neighbour(x0, Data), Data)

[,1]

[1,] 2.63

> OF(neighbour(x0, Data), Data)

[,1]

[1,] 2.62

> OF(neighbour(x0, Data), Data)

[,1]

[1,] 2.62

We collect all se�ings for the algorithm, including the neighbourhood func-

tion, in a list algo. �en we run TAopt.

> algo <- list(nT = 10L, ## number of thresholds

nS = 200L, ## number of steps per threshold

nD = 1000L, ## number of random steps to compute thresholds

neighbour = neighbour,

x0 = x0,

printBar = FALSE)

> system.time(sol1 <- TAopt(OF, algo = algo, Data = Data))

We check the resulting solution’s objective function value sol1$OFvalue,

and we compare the selected regressors with the true regressors.

> sol1$OFvalue

[,1]

[1,] 0.0377

> which(sol1$xbest) ## the selected regressors
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[1] 42 57 61 101 122 208 209 232 243 252 288 309 361 379

[15] 385 408 423 446 454 463 491 494

> rD$K ## the true regressors

[1] 61 209 243 408 433 463

�ey are not the same. But in a relatively small sample we should actually

not expect this to be the case. (You can increase n to see if the true model

is eventually identified.) In fact, we can compare the value of the objective

function for the true model and the selected model.

> xtrue <- logical(Data$p)

> xtrue[rD$K] <- TRUE

> OF(sol1$xbest, Data)

[,1]

[1,] 0.0377

> OF(xtrue, Data)

[,1]

[1,] 0.11

We see that the Schwarz criterion for our selected model is lower than for the

true model.

Finally, we run a small experiment (note that all runs use the same starting

value x0).

> restarts <- 50L

> algo$printDetail <- FALSE

> res <- restartOpt(TAopt, n = restarts,

OF = OF, algo = algo, Data = Data,

cl = 2)

> par(bty = "n", las = 1,mar = c(3,4,0,0),

ps = 8, tck = 0.001, mgp = c(3, 0.5, 0))

> plot(ecdf(sapply(res, `[[`, "OFvalue")), ## extract solution quality

cex = 0.4, main = "", ylab = "", xlab = "")
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For each solution, we compute the objective function value, and also the se-

lected regressors.

> xbestAll <- sapply(res, `[[`, "xbest") ## extract all solutions

> inclReg <- which(rowSums(xbestAll) > 0L) ## get included regressors

> inclReg <- sort(union(rD$K, inclReg))

> data.frame(regressor = inclReg,

`included` = paste(rowSums(xbestAll)[inclReg], "/",

restarts, sep = ""),

`true regressor?` = inclReg %in% rD$K,

check.names = FALSE)

regressor included true regressor?

1 1 10/50 FALSE

2 3 1/50 FALSE

3 9 1/50 FALSE

4 10 11/50 FALSE

5 11 1/50 FALSE

6 13 1/50 FALSE

7 14 3/50 FALSE

8 15 3/50 FALSE

9 17 1/50 FALSE

10 19 14/50 FALSE

11 20 2/50 FALSE

12 22 3/50 FALSE

13 26 3/50 FALSE

14 27 1/50 FALSE

15 30 4/50 FALSE

16 31 1/50 FALSE

17 32 1/50 FALSE

18 41 6/50 FALSE

19 42 7/50 FALSE

20 44 3/50 FALSE

21 50 1/50 FALSE

22 51 10/50 FALSE

23 53 7/50 FALSE
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24 59 1/50 FALSE

25 61 48/50 TRUE

26 64 3/50 FALSE

27 65 9/50 FALSE

28 67 1/50 FALSE

29 69 1/50 FALSE

30 72 5/50 FALSE

31 73 4/50 FALSE

32 75 5/50 FALSE

33 77 1/50 FALSE

34 78 1/50 FALSE

35 79 1/50 FALSE

36 82 3/50 FALSE

37 83 1/50 FALSE

38 91 2/50 FALSE

39 94 9/50 FALSE

40 95 1/50 FALSE

41 96 3/50 FALSE

42 100 4/50 FALSE

43 101 25/50 FALSE

44 104 1/50 FALSE

45 105 4/50 FALSE

46 106 1/50 FALSE

47 108 2/50 FALSE

48 111 2/50 FALSE

49 112 1/50 FALSE

50 114 3/50 FALSE

51 116 1/50 FALSE

52 122 27/50 FALSE

53 123 3/50 FALSE

54 125 1/50 FALSE

55 133 16/50 FALSE

56 134 2/50 FALSE

57 135 22/50 FALSE

58 139 1/50 FALSE

59 141 6/50 FALSE

60 143 1/50 FALSE

61 144 3/50 FALSE

62 145 1/50 FALSE

63 146 6/50 FALSE

64 147 7/50 FALSE

65 148 1/50 FALSE

66 149 3/50 FALSE

67 154 9/50 FALSE

68 156 7/50 FALSE

69 158 1/50 FALSE

70 164 2/50 FALSE

71 167 1/50 FALSE

72 170 1/50 FALSE
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73 172 1/50 FALSE

74 175 1/50 FALSE

75 176 3/50 FALSE

76 177 2/50 FALSE

77 179 1/50 FALSE

78 180 1/50 FALSE

79 181 3/50 FALSE

80 183 1/50 FALSE

81 184 6/50 FALSE

82 185 1/50 FALSE

83 193 9/50 FALSE

84 194 6/50 FALSE

85 197 2/50 FALSE

86 198 17/50 FALSE

87 207 2/50 FALSE

88 208 38/50 FALSE

89 209 48/50 TRUE

90 211 8/50 FALSE

91 212 3/50 FALSE

92 214 1/50 FALSE

93 216 5/50 FALSE

94 222 4/50 FALSE

95 223 2/50 FALSE

96 224 1/50 FALSE

97 226 1/50 FALSE

98 227 2/50 FALSE

99 231 2/50 FALSE

100 232 6/50 FALSE

101 237 2/50 FALSE

102 240 2/50 FALSE

103 242 1/50 FALSE

104 243 45/50 TRUE

105 251 2/50 FALSE

106 252 7/50 FALSE

107 255 3/50 FALSE

108 258 1/50 FALSE

109 259 2/50 FALSE

110 261 1/50 FALSE

111 262 1/50 FALSE

112 264 13/50 FALSE

113 266 1/50 FALSE

114 268 8/50 FALSE

115 272 12/50 FALSE

116 273 4/50 FALSE

117 274 6/50 FALSE

118 275 7/50 FALSE

119 277 1/50 FALSE

120 278 1/50 FALSE

121 280 2/50 FALSE
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122 281 2/50 FALSE

123 283 7/50 FALSE

124 284 6/50 FALSE

125 286 1/50 FALSE

126 287 1/50 FALSE

127 288 15/50 FALSE

128 289 2/50 FALSE

129 290 11/50 FALSE

130 292 2/50 FALSE

131 293 1/50 FALSE

132 294 1/50 FALSE

133 295 5/50 FALSE

134 297 1/50 FALSE

135 298 4/50 FALSE

136 299 16/50 FALSE

137 302 7/50 FALSE

138 303 1/50 FALSE

139 306 4/50 FALSE

140 309 17/50 FALSE

141 311 4/50 FALSE

142 312 1/50 FALSE

143 313 1/50 FALSE

144 315 19/50 FALSE

145 316 10/50 FALSE

146 317 6/50 FALSE

147 318 13/50 FALSE

148 319 15/50 FALSE

149 324 1/50 FALSE

150 326 1/50 FALSE

151 328 10/50 FALSE

152 329 11/50 FALSE

153 332 1/50 FALSE

154 333 3/50 FALSE

155 337 4/50 FALSE

156 338 7/50 FALSE

157 339 9/50 FALSE

158 341 2/50 FALSE

159 342 2/50 FALSE

160 343 5/50 FALSE

161 344 1/50 FALSE

162 346 1/50 FALSE

163 347 3/50 FALSE

164 349 1/50 FALSE

165 350 1/50 FALSE

166 352 14/50 FALSE

167 353 1/50 FALSE

168 354 5/50 FALSE

169 357 15/50 FALSE

170 361 35/50 FALSE
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171 364 1/50 FALSE

172 366 1/50 FALSE

173 368 1/50 FALSE

174 370 1/50 FALSE

175 372 1/50 FALSE

176 374 2/50 FALSE

177 376 2/50 FALSE

178 379 4/50 FALSE

179 381 2/50 FALSE

180 382 2/50 FALSE

181 383 1/50 FALSE

182 385 37/50 FALSE

183 386 5/50 FALSE

184 389 23/50 FALSE

185 390 3/50 FALSE

186 396 14/50 FALSE

187 397 1/50 FALSE

188 398 4/50 FALSE

189 400 31/50 FALSE

190 401 3/50 FALSE

191 406 13/50 FALSE

192 408 46/50 TRUE

193 411 3/50 FALSE

194 412 2/50 FALSE

195 413 6/50 FALSE

196 414 1/50 FALSE

197 415 1/50 FALSE

198 417 1/50 FALSE

199 418 1/50 FALSE

200 419 2/50 FALSE

201 421 1/50 FALSE

202 423 25/50 FALSE

203 424 2/50 FALSE

204 428 3/50 FALSE

205 429 1/50 FALSE

206 431 2/50 FALSE

207 432 32/50 FALSE

208 433 15/50 TRUE

209 434 1/50 FALSE

210 435 4/50 FALSE

211 438 1/50 FALSE

212 440 1/50 FALSE

213 444 3/50 FALSE

214 446 2/50 FALSE

215 448 1/50 FALSE

216 453 2/50 FALSE

217 454 5/50 FALSE

218 461 1/50 FALSE

219 462 1/50 FALSE
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220 463 45/50 TRUE

221 468 2/50 FALSE

222 469 1/50 FALSE

223 470 1/50 FALSE

224 471 2/50 FALSE

225 472 1/50 FALSE

226 475 1/50 FALSE

227 477 1/50 FALSE

228 481 1/50 FALSE

229 489 1/50 FALSE

230 490 3/50 FALSE

231 491 7/50 FALSE

232 492 1/50 FALSE

233 493 2/50 FALSE

234 494 14/50 FALSE

235 495 1/50 FALSE

236 497 3/50 FALSE

237 498 1/50 FALSE

238 499 1/50 FALSE

239 500 1/50 FALSE

Across the restarts, we get a relatively clear answer which regressors should,

according to the Schwarz criterion, be put into the model.

> dim(rD$X)

[1] 200 500

> neighbour2 <- function(xc, Data) {

if ((sumx <- sum(x0)) >= Data$maxk)

ex <- sample(which(x0), 1L)

else if (sumx == 1L)

ex <- sample(which(!x0), 1L)

else

ex <- sample.int(Data$p, 1L)

xc[ex] <- !xc[ex]

xc

}

> neighbour <- function(xc, Data) {

xn <- xc

ex <- sample.int(Data$p, 1L)

xn[ex] <- !xn[ex]

sumx <- sum(xn)

if ( sumx < 1L || (sumx > Data$maxk) )

xc else xn

}

> algo <- list(nT = 20L, ## number of thresholds

nS = 200L, ## number of steps per threshold
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nD = 1000L, ## number of random steps to compute thresholds

neighbour = neighbour,

x0 = x0, q= 0.5,

printBar = FALSE)

> system.time(sol1 <- TAopt(OF, algo = algo, Data = Data))

Threshold Accepting

Computing thresholds ... OK

Estimated remaining running time: 0.652 secs

Running Threshold Accepting ...

Initial solution: 2.6

Finished.

Best solution overall: -0.19

user system elapsed

0.804 0.099 0.902

> plot(cummin(sol1$Fmat[ ,2L]), type = "l", log = "y")

> ##rD

> OF <- function(x, Data) {

q <- qr(Data$X[ ,x])

e <- qr.resid(q, Data$y)

crossprod(e)

}
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13. Calibrating option pricing

models

In this chapter we look into fi�ing option pricing models to market prices.

13.1. Implied volatility

13.1.1. A single option

We first code a simple Black–Scholes–Merton formula, which we call bsm.

We also calculate one of the Greeks, the vega. �e function takes the usual

parameters and the indicator I, which is 1 for a call and -1 for a put.

> bsm <- function(S, X, tau, r, q, vol, I = 1) {

d1 <- (log(S/X) + (r - q + vol^2/2) * tau)/

(vol * sqrt(tau))

d2 <- d1 - vol * sqrt(tau)

list(value = I * (S * exp(-q * tau) * pnorm(I * d1) -

X * exp(-r * tau) * pnorm(I * d2)),

vega = S * exp(-q*tau) * dnorm(d1 * I) * sqrt(tau))

}

A numerical example.

> S <- 99 ## spot

> X <- 100 ## strike

> r <- 0.01

> q <- 0.0

> tau <- 0.25

> vol <- 0.2

> I <- 1 ## a call (-1 for a put)

> unlist(bsm(S, X, tau, r, q, vol, I))

value vega

3.6 19.7

As a check, we can use the function vanillaOptionEuropean that comes

with the NMOF package Note that vanillaOptionEuropean takes variance

as an input, i.e. volatility squared).
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> tmp <- unlist(

vanillaOptionEuropean(S = S, X = X, tau = tau,

r = r, q = q, v = vol^2,

type = ifelse(I == 1,

"call", "put")))

> tmp[c("value", "vega")]

value vega

3.6 19.7

Now we code a simple Newton–Raphson root finder (see GMS, Chapter 11).

We can use a for loop to automatically limit the number of iterations.We first

compute a true price for given parameters, and then we will try to recover the

volatility.

> S <- 99

> X <- 100

> r <- 0.01

> q <- 0.01

> tau <- 0.1

> I <- 1

> vol <- 0.247

> (price <- bsm(S, X, tau, r, q, vol, I)$value)

[1] 2.62

Here is the Newton–Raphson function. Note that vol0 is the initial guess for

the volatility (see also GMS, Chapter 15).

> impliedVol <- function(price, S, X, tau, r, q,

vol0 = 0.15, I = 1,

tol = 1e-4, maxit = 10) {

for (i in seq_len(maxit)) {

tmp <- bsm(S, X, tau, r, q, vol0, I)

step <- (tmp$value - price)/tmp$vega

vol0 <- vol0 - step

if (all(abs(step) < tol))

break

}

vol0

}

You may wonder about the all() in the break condition; it will be explained

shortly. Let us try the function; there is also a function vanillaOptionImpliedVol

in the NMOF package, which we may use to check the result.
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> impliedVol(price, S, X, tau, r, q, vol, I)

[1] 0.247

> vanillaOptionImpliedVol(exercise = "european",

price, S, X, tau, r,

q, type = "call")

[1] 0.247

impliedVol is faster then vanillaOptionImpliedVol (but the la�er may

become rewri�en in the future).

> benchmark(iV = impliedVol(price, S, X, tau,

r, q, runif(1L) + 0.05, I),

vanOptIV = vanillaOptionImpliedVol(

exercise = "european",

price, S, X, tau, r,

q, tauD = 0, D = 0, type = "call",

M = 101, uniroot.info = FALSE),

columns = c("test", "elapsed", "relative"),

replications = 1e3, order = "relative")

test elapsed relative

1 iV 0.030 1.00

2 vanOptIV 0.151 5.03

13.1.2. Several options

For European options, many computations can be vectorised. First a pricing

example; we reuse the function bsm, whichwe defined in the previous section.

We only enter vectors of length greater than one as input.

> S <- rep(99, 21) ## spot

> X <- 90:110 ## strike

> r <- 0.01; q <- 0.02

> tau <- 0.2; vol <- 0.24; I <- 1

> data.frame(S = S, X = X, bsm(S, X, tau, r, q, vol, I))

S X value vega

1 99 90 9.856 11.5

2 99 91 9.080 12.6

3 99 92 8.336 13.6

4 99 93 7.625 14.5
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5 99 94 6.949 15.4

6 99 95 6.310 16.1

7 99 96 5.707 16.7

8 99 97 5.142 17.2

9 99 98 4.615 17.4

10 99 99 4.126 17.6

11 99 100 3.675 17.6

12 99 101 3.260 17.4

13 99 102 2.880 17.1

14 99 103 2.535 16.6

15 99 104 2.222 16.1

16 99 105 1.940 15.4

17 99 106 1.687 14.7

18 99 107 1.462 13.9

19 99 108 1.262 13.0

20 99 109 1.085 12.1

21 99 110 0.929 11.2

More usefully, let us price a surface with given maturities tauvec and strikes

Xvec (all calls).

> Xvec <- 80:120

> tauvec <- c(c(3, 6, 9)/12, ## 3, 6, 9 months

1, 2, 3, 4, 5) ## 1..5 years

One way the fill the surface with prices is to use two nested loops.

> loop <- function() {

callprices <- array(NA, dim = c(length(Xvec), length(tauvec)))

for (X in Xvec)

for (tau in tauvec)

callprices[X == Xvec, tau == tauvec] <- bsm(S,X,tau,r,q,vol)$value

callprices

}

If we insist on vectorised computation, we can do it like this.

> vect <- function() {

tmp <- expand.grid(Xvec,tauvec)

callprices <- bsm(S, tmp[[1L]], tmp[[2L]], r, q, vol, I)$value

dim(callprices) <- c(length(Xvec), length(tauvec))

callprices

}

An example follows; it checks whether loop and vect result in the same

prices (they do).
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> S <- 101

> Xvec <- 80:120

> tauvec <- c(c(3, 6, 9)/12, ## 3, 6, 9 months

1, 2, 3, 4, 5) ## 1..5 years

> r <- 0.01; q <- 0.01

> tau <- 0.25; vol <- 0.2; I <- 1

> callprices1 <- loop()

> callprices2 <- vect()

> all.equal(callprices1, callprices2)

[1] TRUE

�e vectorised variant may be more obscure code, but we are compensated

in terms of speed.

> benchmark(loop(), vect(),

columns = c("test", "elapsed", "relative"),

replications = 1e3, order = "relative")

test elapsed relative

2 vect() 0.173 1.0

1 loop() 2.550 14.7

And now implied volatility. Again, we use the same function as before. Now

the use of all() in the break criterion becomes apparent: only when all steps

are smaller than tol, the loop is exited.

> S <- rep(99,21) ## spot

> X <- 90:110

> r <- 0.01

> q <- 0.02

> tau <- runif(21)

> vol <- (runif(21)+0.2)/3

> ivol <- impliedVol(bsm(S, X, tau, r, q, vol, I)$value,

S, X, tau, r, q, vol = 0.2,

I, tol = 1e-5, maxit = 10)

> data.frame(S = S, X = X, vol = vol, ivol = ivol,

diff = abs(vol-ivol))

S X vol ivol diff

1 99 90 0.3211 0.3211 4.44e-16

2 99 91 0.2232 0.2232 5.27e-16

3 99 92 0.1520 0.1520 2.50e-16

4 99 93 0.1597 0.1597 1.25e-15

5 99 94 0.0704 0.0704 8.33e-17

6 99 95 0.2726 0.2726 1.67e-16
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7 99 96 0.2756 0.2756 2.22e-16

8 99 97 0.3398 0.3398 2.22e-16

9 99 98 0.1043 0.1043 6.11e-16

10 99 99 0.2240 0.2240 1.39e-16

11 99 100 0.3462 0.3462 1.67e-16

12 99 101 0.1173 0.1173 0.00e+00

13 99 102 0.3886 0.3886 5.55e-17

14 99 103 0.2662 0.2662 5.55e-17

15 99 104 0.1399 0.1399 5.55e-17

16 99 105 0.1187 0.1187 1.67e-16

17 99 106 0.3688 0.3688 2.78e-16

18 99 107 0.1399 0.1399 2.07e-14

19 99 108 0.1789 0.1789 0.00e+00

20 99 109 0.0992 0.0992 1.67e-16

21 99 110 0.2638 0.2638 5.55e-17

And for a single option, it does not take long (and note that we compute the

option price as well).

> system.time(

for (i in 1:1e3)

impliedVol(bsm(S, X, tau, r, q, vol, I)$value,

S, X, tau, r, q, tol = 1e-5, maxit = 5))

user system elapsed

0.081 0.000 0.080

13.2. Alternative pricing models

> S <- 100 ## spot

> X <- 100 ## strike

> tau <- 1 ## time-to-maturity

> r <- 0.02 ## interest rate

> q <- 0.02 ## dividend rate

> v <- 0.2 ## volatility

�e closed-form solution.

> callBSM <- function(S,X,tau,r,q,v) {

d1 <- (log(S/X) + (r - q + v^2 / 2)*tau) / (v*sqrt(tau))

d2 <- d1 - v*sqrt(tau)

S * exp(-q * tau) * pnorm(d1) - X * exp(-r * tau) * pnorm(d2)

}

> callBSM(S,X,tau,r,q,v)
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[1] 7.81

With the characteristic function.

> callCF(cf = cfBSM, S = S, X = X, tau = tau, r = r, q = q,

v = v^2, ## variance, not vol

implVol = TRUE)

$value

[1] 7.81

$impliedVol

[1] 0.2

As a first exercise, we price a whole surface with the given parameters.

> Xvec <- 80:120

> tauvec <- c(c(3, 6, 9)/12, ## 3, 6, 9 months

1, 2, 3, 4, 5) ## 1..5 years

As before, we may use loops or vectorise. �e loop version first.

> loop2 <- function() {

callprices <- array(NA,

dim = c(length(Xvec),

length(tauvec)))

for (X in Xvec)

for (tau in tauvec)

callprices[X == Xvec, tau == tauvec] <-

callBSM(S,X,tau,r,q,v)

callprices

}

And the vectorised version.

> vect2 <- function() {

tmp <- expand.grid(Xvec,tauvec)

callprices <- callBSM(S, tmp[[1]], tmp[[2]], r, q, v)

dim(callprices) <- c(length(Xvec), length(tauvec))

callprices

}

> callprices1 <- loop2()

> callprices2 <- vect2()

> all.equal(callprices1, callprices2)
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[1] TRUE

Speed difference.

> benchmark(loop2(), vect2(),

columns = c("test", "elapsed", "relative"),

replications = 1e3, order = "relative")

test elapsed relative

2 vect2() 0.156 1.0

1 loop2() 1.737 11.1

Not let us move to pricing with the cf.

> priceMatrix <- function(cf, S, Xvec, tauvec,

r, q = 0, ...,

nodes = NULL, weights = NULL,

n = 200) {

if (is.null(nodes)) {

tmp <- xwGauss(n)

tmp <- changeInterval(tmp$nodes, tmp$weights,

oldmin = -1, oldmax = 1,

newmin = 0, newmax = 200)

nodes <- tmp$nodes

weights <- tmp$weights

}

callprices <- array(NA, dim = c(length(Xvec), length(tauvec)))

tmpmat <- array(NA, dim = c(length(Xvec), length(weights)))

inodes <- 1i * nodes

itau <- 0L

for (tau in tauvec) {

itau <- itau + 1L

cfi <- S * exp((r - q) * tau)

cf1 <- cf(nodes - 1i, S, tau, r, q, ...)/inodes/cfi

cf2 <- cf(nodes, S, tau, r, q, ...)/inodes

iX <- 0L

for (X in Xvec) {

iX <- iX + 1L

if (itau == 1L)

tmpmat[iX, ] <- exp(-inodes * log(X))

P1 <- 0.5 + weights %*% Re(tmpmat[iX, ] * cf1)/pi

P2 <- 0.5 + weights %*% Re(tmpmat[iX, ] * cf2)/pi

callprices[iX, itau] <-
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exp(-q*tau) * S * P1 - exp(-r*tau) * X * P2

}

}

callprices

}

> system.time(

for (i in 1:100)

ignore <- priceMatrix(cf = cfBSM, S, Xvec, tauvec, r, q = q,

v = 0.2^2, n = 50) )

user system elapsed

38.999 0.012 3.638

> require("compiler")

> priceMatrix2 <- cmpfun(priceMatrix)

> system.time(

for (i in 1:100)

ignore <- priceMatrix2(cf = cfBSM, S, Xvec, tauvec, r, q = q,

v = 0.2^2, n = 50) )

user system elapsed

227.528 0.199 21.612

>

It should not come as a surprise that the classical Black–Scholes–Merton for-

mula is faster.

> cfp <- priceMatrix(cf = cfBSM, S, Xvec, tauvec, r, q = q,

v = 0.2^2, n = 100)

> callprices1[1:5, 1:5]

[,1] [,2] [,3] [,4] [,5]

[1,] 19.9 20.1 20.4 20.8 22.2

[2,] 19.0 19.2 19.5 19.9 21.5

[3,] 18.0 18.3 18.7 19.1 20.8

[4,] 17.0 17.4 17.9 18.4 20.1

[5,] 16.1 16.5 17.0 17.6 19.4

> callprices2[1:5, 1:5]

[,1] [,2] [,3] [,4] [,5]

[1,] 19.9 20.1 20.4 20.8 22.2

[2,] 19.0 19.2 19.5 19.9 21.5

[3,] 18.0 18.3 18.7 19.1 20.8

[4,] 17.0 17.4 17.9 18.4 20.1

[5,] 16.1 16.5 17.0 17.6 19.4
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> cfp[1:5, 1:5]

[,1] [,2] [,3] [,4] [,5]

[1,] 19.9 20.1 20.4 20.8 22.2

[2,] 19.0 19.2 19.5 19.9 21.5

[3,] 18.0 18.3 18.7 19.1 20.8

[4,] 17.0 17.4 17.9 18.4 20.1

[5,] 16.1 16.5 17.0 17.6 19.4

> all.equal(callprices1, cfp)

[1] TRUE

> system.time(

for (i in 1:100)

ignore <- loop2() )

user system elapsed

0.201 0.000 0.201

> system.time(

for (i in 1:100)

ignore <- vect2() )

user system elapsed

0.02 0.00 0.02

> system.time(

for (i in 1:100)

ignore <- priceMatrix(cf = cfBSM, S, Xvec, tauvec,

r, q = q,

v = 0.2^2, n = 50) )

user system elapsed

160.663 0.082 15.160

But it turns out we can save quite some time by precomputing the nodes and

weights for the numerical integration.

> tmp <- xwGauss(50)

> tmp <- changeInterval(tmp$nodes, tmp$weights,

oldmin = -1, oldmax = 1,

newmin = 0, newmax = 200)

> nodes <- tmp$nodes

> weights <- tmp$weights

> system.time(
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for (i in 1:100)

ignore <- priceMatrix(cf = cfBSM, S, Xvec, tauvec,

r, q = q,

v = 0.2^2,

nodes = nodes, weights = weights))

user system elapsed

0.278 0.000 0.277
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14. Combining different heuristics

You can also combine several heuristics; see the discussion in Section 12.4 of

gms.

14.1. Single-solution methods

For LSopt, TAopt and SAopt, the simplestway to incorporate anothermethod

is through the neighbourhood function. ta could, for instance, every : iter-

ations not draw a neighbour from some specific neighbourhood, but instead

call some other method, pass the current solution as the starting value, and

then return this method’s solution as the new solution.

14.2. Population-based methods

�e way to call new methods would be through the repair function. We

could, for instance, write a repair mechanism (or rather an ‘improve’ mech-

anism) that every : iterations picks the best member of the population and

performs some type of trajectory method (eg, a direct search). �e solution

returned by this second method then (possibly) replaces the member in the

population.
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A. Resources

A.1. Solutions to exercises

A.2. Installing the package

�e latest version of the package is available from http://enricoschumann.

net. �e package is also available from cran. To install the package from

within R, type

> install.packages("NMOF") ## CRAN

> install.packages("NMOF",

repos = c('http://enricoschumann.net/R',

getOption('repos')))

to download and install it.

�e source of the package is also pushed to GitHub and GitLab:

https://gitlab.com/NMOF/NMOF

https://github.com/enricoschumann/NMOF

You can directly access all the R scripts that are displayed in the book with

the function showExample. For instance:

> require("NMOF")

> showExample("exampleOF.R")

A.3. Other resources

You can download all the code examples from gms from the book’s home page,

http://nmof.net

Much additional material (working papers, presentations, errata) are available

from
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http://enricoschumann.net/NMOF

New versions of the package and other news are announced through the

NMOF-news mailing list. To browse the archives or to subscribe, go to

https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/

nmof-news

Applications, as long as they are finance-related, should be discussed on the

R-SIG-Financemailing list: https://stat.ethz.ch/mailman/listinfo/

r-sig-finance

Please send bug reports or suggestions directly to the package maintainer, for

instance by using bug.report.

> require("utils")

> bug.report("[NMOF] Unexpected behaviour in function XXX",

maintainer("NMOF"), package = "NMOF")
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A.4. Package Version and Session Information

> toLatex(sessionInfo())

• R version 4.3.1 (2023-06-16), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C,

LC_TIME=en_GB.UTF-8, LC_COLLATE=en_US.UTF-8,

LC_MONETARY=en_GB.UTF-8, LC_MESSAGES=en_US.UTF-8,

LC_PAPER=en_GB.UTF-8, LC_NAME=C, LC_ADDRESS=C,

LC_TELEPHONE=C, LC_MEASUREMENT=en_GB.UTF-8,

LC_IDENTIFICATION=C

• Time zone: Europe/Zurich

• TZcode source: system (glibc)

• Running under: Ubuntu 23.04

• Matrix products: default

• BLAS:

/usr/lib/x86_64-linux-gnu/openblas-openmp/libblas.so.3

• LAPACK:

/usr/lib/x86_64-linux-gnu/openblas-openmp/libopenblasp-r0.3.21.so

; LAPACK version3.11.0

• Base packages: base, compiler, datasets, graphics, grDevices, methods,

stats, tools, utils

• Other packages: cccp 0.2-9, codetools 0.2-19, digest 0.6.33,

FRAPO 0.4-1, NMOF 2.8-0, plotseries 0.2.1, rbenchmark 1.0.0,

Rglpk 0.6-5, robustbase 0.99-0, slam 0.1-50, timeDate 4022.108,

timeSeries 4030.106, weaver 1.66.0, zoo 1.8-12

• Loaded via a namespace (and not a�ached): cellranger 1.1.0, cli 3.6.1,

datetimeutils 0.6-2, DEoptimR 1.1-1, fansi 1.0.4, fastmatch 1.1-3,

glue 1.6.2, grid 4.3.1, la�ice 0.21-9, lifecycle 1.0.3, magri�r 2.0.3,

openxlsx 4.2.5.2, orgutils 0.5-0, parallel 4.3.1, pillar 1.9.0,

pkgconfig 2.0.3, PMwR 0.19-3, quadprog 1.5-8, Rcpp 1.0.11,

readxl 1.4.3, rlang 1.1.1, stringi 1.7.12, textutils 0.3-2, tibble 3.2.1,

utf8 1.2.3, vctrs 0.6.3, zip 2.3.0
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LSopt (R function in package NMOF),

21

MA, 115

matrix, 134

maxSharpe, 123

mc, 116

minCVaR, 122

minMAD, 125

minvar, 121

mvFrontier, 118

mvPortfolio, 118

NA, 128

Neighbour solution, 18

Neighbourhood functions

testing of, 176–183

NULL, 128

numeric, 134

parallel (R package), 89, 91
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plotseries (R function in pack-

age plotseries), 128

PSopt, 77

PSopt, 79

putCallParity, 99, 101

qr, 117

qr, 35

R packages

FRAPO, 159

compiler, 169

parallel, 89, 91

rbenchmark, 33

robustbase, 37

R-SIG-Finance, 230

randomReturns, 133

rbenchmark (R package), 33

rbinom (R function in package stats),

109

resampleC, 108

restartOpt, 36

Rglpk solve LP, 123, 126

Ritter, 131

rnorm (R function in package stats),

109

robustbase (R package), 37

runif (R function in package stats),

109

SAopt, 55, 58, 61

SAopt, 60

Semivariance, 145

Shiller, 129

showExample (R function in pack-

age NMOF), 229

Simulated Annealing, 25

description, 60–63

diagnostics, 63

solve.QP, 122, 124, 125

TAopt, 55, 58, 61

TAopt, 57

�reshold Accepting, 25

description, 57–60

diagnostics, 60

trackingPortfolio, 124

txtProgressBar, 58, 62, 67

uniroot, 97, 99, 102, 103

vanillaBond, 104

vanillaOptionAmerican, 95

vanillaOptionEuropean, 95

vanillaOptionImpliedVol, 95

xwGauss, 94

ytm, 104

ytm, 104
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