Before Markowitz, there was nothing.

Harry Markowitz

- portfolios matter, not single stocks: portfolio selection, rather than stock selection
- statistical properties of portfolios derived from single stocks

Harry Markowitz

GOTO: mv.R

Harry Markowitz

- impact of long-only
- impact of correlations

Zero risk?

R returns, size $n_{\text {scenarios }} \times n_{\text {assets }}$ w portfolio weights

Rw portfolio returns

Zero risk?

$$
\begin{gathered}
m=\frac{1}{n_{\mathrm{s}}} \iota^{\prime} R \\
\frac{1}{n_{\mathrm{s}}} R^{\prime} R=\operatorname{Cov}(R)+m m^{\prime}
\end{gathered}
$$

Risk and reward

not all risk can be diversified

Risk and reward

not all risk can be diversified
\rightarrow if not all risk can be diversified, try to get rewarded

Risk and reward

not all risk can be diversified
\rightarrow if not all risk can be diversified, try to get rewarded characterise any portfolio by risk and reward

Risk and reward

not all risk can be diversified
\rightarrow if not all risk can be diversified, try to get rewarded
characterise any portfolio by risk and reward
a portfolio is efficient if, for a level of risk, there is no portfolio with higher expected return (equivalently: if, for a level of return, there is no portfolio with less risk)

Risk and reward

Markowitz (1952): reward is expected portfolio return

$$
\sum_{i=1}^{n_{\mathrm{A}}} \mu_{i} w_{i}=\mu^{\prime} w
$$

and risk is portfolio-return variance

$$
\sum_{i=1}^{n_{\mathrm{A}}} \sum_{j=1}^{n_{\mathrm{A}}} w_{i} w_{j} \sigma_{i j}=w^{\prime} \Sigma w
$$

Constructing efficient frontiers

$$
\max _{w} \mu^{\prime} w-\gamma w^{\prime} \Sigma w
$$

with constraints

$$
\begin{aligned}
w & \geq 0 \\
w^{\prime} \iota & =1
\end{aligned}
$$

Quadratic Programming (QP)

in R, with solve.QP (package quadprog)

$$
\min _{b}-d^{\prime} b+\frac{1}{2} b^{\prime} Q b
$$

subject to

$$
A^{\prime} b \geq b_{0}
$$

Quadratic Programming (QP)

in R, with solve.QP (package quadprog)

$$
\min _{b}-d^{\prime} b+\frac{1}{2} b^{\prime} Q b
$$

$$
\max _{w} \mu^{\prime} w-\gamma w^{\prime} \Sigma w
$$

subject to subject to

$$
A^{\prime} b \geq b_{0}
$$

$$
\begin{aligned}
w & \geq 0 \\
\sum w & =1
\end{aligned}
$$

QP - objective function

$$
-d^{\prime} b+\frac{1}{2} b^{\prime} Q b
$$

QP - objective function

$$
-d^{\prime} b+\frac{1}{2} b^{\prime} Q b
$$

make substitutions

$$
\begin{aligned}
d & =-\mu \\
Q & =-2 \gamma \Sigma
\end{aligned}
$$

QP - objective function

$$
-d^{\prime} b+\frac{1}{2} b^{\prime} Q b
$$

make substitutions

$$
\begin{aligned}
d & =-\mu \\
Q & =-2 \gamma \Sigma
\end{aligned}
$$

and we get

$$
\mu^{\prime} w-\gamma w^{\prime} \Sigma w
$$

QP - constraints $A^{\prime} b \geq b_{0}$

QP - constraints $A^{\prime} b \geq b_{0}$

$A^{\prime}=\left[\begin{array}{rrrr}1 & 1 & \ldots & 1 \\ -1 & & & \\ & -1 & & \\ & & \ddots & \\ & & & -1 \\ 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1\end{array}\right]=\left[\begin{array}{r}t_{n_{A}} \\ -I_{n_{A}} \\ I_{n_{\mathrm{A}}}\end{array}\right]$ and $b_{0}=\left[\begin{array}{c}1 \\ -w_{1}^{\max } \\ -w_{2}^{\max } \\ \vdots \\ -w_{n_{\mathrm{A}}}^{\max } \\ w_{1}^{\min } \\ w_{2}^{\min } \\ \vdots \\ w_{n_{\mathrm{A}}}^{\min }\end{array}\right]$

$$
\iota_{n_{\mathrm{A}}}=\underbrace{[1,1,1, \ldots]^{\prime}}_{n_{\mathrm{A}}}
$$

QP - constraints

$>$ na <- 3
$>\operatorname{rbind}(1,-\operatorname{diag}(n a), \operatorname{diag}(n a))$

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	1	1	1
$[2]$,	-1	0	0
$[3]$,	0	-1	0
$[4]$,	0	0	-1
$[5]$,	1	0	0
$[6]$,	0	1	0
$[7]$,	0	0	1

QP - constraints

> require("Matrix")
> na <- 3
> Matrix(rbind(1, -diag(na), diag(na)))
7 x 3 sparse Matrix of class "dgCMatrix"
$[1] \quad 1 \quad 1 \quad$,
[2,] -1
[3,] . -1 .
$[4$,$] . -1$
$[5] \quad$,1 .
$[6$,$] . 1$.
$[7$,$] . 1$

Harry Markowitz

GOTO: mv.R

References

囯 Gilli, Manfred, Dietmar Maringer, and Enrico Schumann
(2011). Numerical Methods and Optimization in Finance. Elsevier/Academic Press. URL: http: //nmof .net.
囯 Markowitz, Harry M. (1952). "Portfolio Selection". In: Journal of Finance 7.1, pp. 77-91.

