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† Throughout this essay, I will use
the word risk interchangeably with
return variation (or volatility, or
return variance). This is clearly
wrong: risk is the potential loss of
a portfolio; that is, risk arises from
trading decisions. Return
variation is a statistical property
and may or may not be correlated
with risk (just think of a pegged
currency). Nevertheless: using
risk this way is (i) in line with the
financial economics literature and
(ii) not unreasonable for equity
portfolios; and (iii) risk as a word,
in a literal sense, is just so much
better that volatility.

A well-known result in portfolio optimisation states that as the number of assets

in a portfolio grows, the variance of portfolio return approaches the average cov-

ariance between the included assets (eg, Elton and Gruber, 1977). In the language

of financial economists, idiosyncratic risk can be diversified away; eventually only

systematic risk remains.†

While this result may be as true as a mathematically-derived statement can

be, its relevance for portfolio management is less clear. If it is taken to mean that

diversification matters for portfolio construction, it is certainly valid. Yet if it is

to mean that the portfolio constructor should care only about covariation – that

is, the joint movement of prices –, then the result leads to a bad prescription for

decision making. More specifically, the result should not be taken as a justification

to emphasise forecasting correlations.
† Apart from forecasting, there is a
second problem. Few people or
even institutions hold portfolios
of thousands of assets. How long
would it take to ‘diversify away’
the peculiarities of marginal
distributions? A number of papers
in the 1970s tried to answer this
question by formulating the
problem as follows. We start with
the maximum–expected-return
portfolio, which consists of just
one asset. We are not certain
about our forecast, so we add
another asset to the portfolio. This
will necessarily reduce expected
return, but it will probably also
lower portfolio variance. Thus,
there should be trade-off between
expected return foregone and
reduced volatility. This is an
elegant and clear story, but
practically of no use since we have
little evidence that returns can be
forecast. But we can typically
forecast volatility.

Covariation is a function of an asset’s marginal distribution and its comove-

ment with other assets. Which part of the asset’s variation is thought to be mar-

ginal, and which part is thought to be caused by comovement depends on a model-

based split, and such models need calibration, typically based on past data.

But we care little about the past; rather, we have to forecast risk.† If we keep the

distinction between idiosyncractic and systematic risk, we need to forecast cor-

relations and marginal risk; for portfolio risk we then aggregate these quantities.

Such forecasts are crucial in portfolio optimisation. An algorithm will typically

sweep through the space of possible portfolios, and in each step look at the ex-

pected risk of the current portfolio. If the risk forecast is not accurate, then the

optimisation cannot help. In fact, it will do harm rather than good (Michaud,

1989).

I will argue in this note that drawing too much inspiration from the above-

stated result is not helpful in forecasting portfolio risk. The reason is an asym-

metry: if an asset is risky when looked at in isolation, then it could become less
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risky in a portfolio because of low correlation. But if an asset is not risky on its

own, it cannot become riskier than implied by its marginal distribution. A fore-

casting scheme should take into account this asymmetry.

An alternative (and much simpler) description is to say that assets have several

desirable properties, such as ‘looks good on its own’ or ‘looks good in relation to

other assets’. The goal of this note is to show that only considering ‘looks good

on its own’ provides so much information that including ‘looks good in relation

to other assets’ does not add much – because we have to make forecasts of these

properties, and we are likely to have forecast errors when doing so.

This point of view is reminiscent of the Take-the-best heuristic in psycho-

logy (Gigerenzer and Goldstein, 1999). Take-the-best prescribes to base a decision

solely the most important cue. The rule will be successful in so-called non-com-

pensatory environments: if we get the most important dimension right, other di-

mensions add no incremental information. I will argue in this note that portfo-

† A large number of studies
document that caring most about
portfolio risk, and not return,
works well empirically. See Gilli
and Schumann (2011) for
references and discussion.

lio optimisation (more specifically, minimising portfolio risk†) may well represent

such a non-compensatory environment.

Intuition

Imagine a long-only equity manager who wishes to reduce the return variation

of his portfolio. For intuition, suppose there are only two equities, both having a

volatility of 20%. The following figures illustrate the effect of correlation on port-

folio volatility.

For possible correlations between zero and unity, the left-hand side of the pic-

ture shows portfolio volatility given a specific invesment in asset 1 (the weight of

asset 2 is one minus the first weight). Unsurprisingly, portfolio volatility is minim-

ised by putting 50% into both assets. With zero correlation, we would reduce risk

by more than 5 percentage points.
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Practically, we do not have zero correlations, and not all assets have equal

volatility. So when we set the second asset’s volatility to 40%, we get a different

picture, as shown on the right-hand side. We see that independently of correla-

tion, we will put almost our total budget into the first asset. As a concrete example,

with a low correlation of 0.3, we could reduce portfolio risk by less than half a per-

centage point. This specific point is indicated by the green dot • in the right-hand

side graphic.
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As long as there is substantial variation in the cross-section (which empirically

is the case), we would not lose much even if we were able to accurately forecast

covariation. So we have a first argument for ignoring correlation and selecting

assets based on ‘looks good on its own’.

And there is a second, even stronger, argument. What happens if we make

a mistake in forecasting correlation? Again, look at the right-hand side picture

above. If the true correlation is 0.6, the optimal allocation would be 100% in asset 1.

If we forecast correlation to be 0.3 instead we would (erroneously) allocate wealth

to the second asset, and not get a portfolio risk of 20%, but of about 21% (indicated

by the red dot •). Thus, forecast error will leave us worse off – which we could have

avoided by only looking at the individual volatilities.

A simulation study
Computing is done with R (R
Development Core Team, 2013).
The minimum-variance portfolio
is computed through quadratic
programming with the quadprog
package (Turlach and Weingessel,
2011). This manuscript is written
with Sweave (Leisch, 2002); the
code is available from
http://enricoschumann.net .

In this section I will present the results of a small simulation study. The aim is to

compute the long-only minimum-variance portfolio from a number of assets.

Specifically, there are 100 assets from which we can choose; marginal volatilit-

ies range from 20 to 40% percent. The goal is to compute the long-only minimum-

variance portfolio of these assets under the restriction that all weights are between

zero and 5%.

We will test two methodologies: classic, for which we compute the variance–

covariance matrix, and sort, for which we simply pick those 20 assets with the

lowest marginal volatility, and put 5% into each.

We use random data sets with constant pairwise correlations ρ, which we vary

between 0.1 and 0.9. For each value of ρ, for a single simulation, we (i) randomly

draw a dataset of 200 observations, (ii) compute the long-only minimum-variance

portfolio via methods classic and sort, and (iii) and compare the results of both

methods. Altogether, we repeat this procedure 1000 times for each value of ρ.

For (ii), the input parameter is the sample variance–covariance matrix (sort

will only use the matrix’s main diagonal). For (iii), we compute two quantities:

first, the expected – or rather ‘hoped-for’ – advantage of the classic portfolio over

the sort portfolio, based on the specific sample:

Even better would have been to
specify true parameters and then
randomly add errors; this would
serve as a reminder that
practically we should not estimate
the required quantities, but should
forecast them.expected difference = volatilityclassic − volatilitysort

Thus, a negative number means that classic is better. Clearly, these numbers will

always be negative since in-sample, sort cannot be better than classic. But more

relevant is the actual difference, for which we evaluate the chosen portfolio at the

true variance–covariance matrix:

actual difference = actual volatilityclassic − actual volatilitysort

The hoped-for advantages are shown in the following table. The results are quite These tables were produced with
the function qTable from the
NMOF package (Gilli et al., 2011).

intuitive: when assets are strongly correlated, then the advantage of computing a

minimum-variance portfolio should be small. But if assets are weakly correlated,

we should expect more gains, and indeed, with a low correlation of 0.1, we expect

to reduce portfolio risk by one percentage point more than through sort.
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ρ median Q5 Q95

0.1 -1.0 -1.3 -0.6 ♣

0.2 -0.5 -0.8 -0.3 ♣

0.3 -0.3 -0.5 -0.1 ♣

0.4 -0.2 -0.3 -0.1 ♣

0.5 -0.1 -0.2 -0.0 ♣

0.6 -0.1 -0.1 -0.0 ♣

0.7 -0.0 -0.1 -0.0 ♣

0.8 -0.0 -0.0 0.0 ♣

0.9 -0.0 -0.0 0.0 ♣

-2 -1 0 1 2

Distribution of differences
between expected (in-sample)
volatility: negative values indicate
that classic promises lower risk
than sort. By construction, all
differences must be negative.

But when we look at the actual differences, these gains disappear. The actual volat-

ility of sort is almost never higher than that of classic, but is often substantially

lower (up to half a percentage point) for low actual correlation. For the empirically

more plausible cases of higher correlation, there is essentially no difference.

ρ median Q5 Q95

0.1 0.4 0.1 0.7 ♣

0.2 0.4 0.1 0.7 ♣

0.3 0.3 0.1 0.6 ♣

0.4 0.2 0.0 0.4 ♣

0.5 0.1 -0.0 0.3 ♣

0.6 0.1 -0.0 0.2 ♣

0.7 0.0 -0.0 0.2 ♣

0.8 0.0 -0.0 0.1 ♣

0.9 0.0 -0.0 0.1 ♣

-2 -1 0 1 2

Distribution of differences
between actual volatility: negative
values indicate that classic has
lower risk that sort.

Discussion

The presented results show that the forecast error for correlation can easily be so

large that only relying on marginal risk seems a good prescription for portfolio

choice. Thus, Taking-the-Best worked well: selecting the assets that looked best

according to a single, easy-to-compute criterion.

This does not imply that we should altogether disregard the comovement of

assets. The above example showed just one particular case, an artificial example.

We need to empirically analyse whether, where and when the result applies (the

driver of the results are variation in the cross-section and forecast error). But the

example makes clear that basing the decision how to diversify naïvely on an estim-

ate/forecast of correlation is probably a bad idea. So to stress that point: I do not

argue against diversification, but against diversification that is driven by forecasts

of correlation.

The result implies, for instance, that simple sorting rules or cutoff rules are

likely ‘more optimal’ than is sometimes thought. At the least, such rules can be

used as benchmarks or as the basis of passively-managed portfolios. For active

managers, the implication is that finding the right assets should be key (and not

fine-tuning asset weights).
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The argument was made for equities in a long-only setting, but how about

long–short portfolios? It is less clear how a sorting rule might include short pos-

itions. At least when absolute position sizes are constrained, allowing short pos-

itions in a portfolio may help in reducing risk. But we should keep in mind that

investors do not like low risk per se. The long-only minimum-variance portfolio is

popular in the literature because several empirical studies have shown that it re-

wards its holder with reasonable returns. There is less empirical evidence for how

long–short minimum-variance portfolios behave. (And even less evidence for the

sort rule!)

Finally, it should be stressed that the underlying idea of this note is not new. A

large number of studies in various disciplines, from econometrics to psychology,

document the fact that simple methods (as opposed to ‘sophisticated’ ones) work

well for prediction under uncertainty. Sadly, within their respective disciplines,

these studies rarely represent mainstream thinking.
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Notes

6 Feb 2013

Manfred Gilli suggested to test a more realistic data-generating process in which

correlations are not pairwise constant. So I ran a number of experiments. The

setup remains as described before, but correlations are now drawn randomly from

a range, such as 0.1 to 0.4.† †Since such random matrices are
typically not positive-semidefinite,
I repair them by replacing their
negative eigenvalues as described
in Gilli et al. (2011, pp. 396–402).

The following tables show that the overall result remains the same; on average

the realised volatility of sort is still lower than that of classic. But the outcomes are

more variable.

ρ median Q5 Q95

0.1–0.4 -0.5 -0.8 -0.2 ♣

0.2–0.5 -0.3 -0.6 -0.1 ♣

0.3–0.6 -0.2 -0.4 -0.1 ♣

0.4–0.7 -0.1 -0.3 -0.0 ♣

0.5–0.8 -0.1 -0.2 -0.0 ♣

0.6–0.9 -0.1 -0.2 -0.0 ♣

-2 -1 0 1

Distribution of differences
between expected (in-sample)
volatility: negative values indicate
that classic promises lower risk
than sort. By construction, all
differences must be negative.

ρ median Q5 Q95

0.1–0.4 0.2 -0.1 0.5 ♣

0.2–0.5 0.2 -0.1 0.4 ♣

0.3–0.6 0.1 -0.0 0.4 ♣

0.4–0.7 0.1 -0.1 0.3 ♣

0.5–0.8 0.1 -0.1 0.3 ♣

0.6–0.9 0.0 -0.1 0.2 ♣

-2 -1 0 1

Distribution of differences
between actual volatility: negative
values indicate that classic has
lower risk that sort.

The most realisitic case is probably the last line in the table; there seems little dif-

ference between classic and sort.

17 Feb 2013

Let me be the first to present empirical evidence against the sort rule (but you will

see shortly why I find little trouble in reporting this evidence).

Dataset are the components of the hdax (110 series) and 20 series from the

eurostoxx 50 universe; altogether 130 series of daily prices. The out-of-sample

series start in January 2011 and end in February 2013. I ran 1000 walk-forwards

with the following settings: for a given walk-forward, a subset of between 50 and

130 series is chosen randomly. Along this walk-forward, every backward looking

window is set randomly to between 180 and 260 trading days; the holding period

is set randomly to between 10 and 60 trading days. The cardinality of sort is the

smallest integer not smaller than

max

(

1/5{number of assets}, 20

)

.

The next table presents the out-of-sample daily risk (not differences) in percentage

points; eg, ‘1.1’ means 1.1% daily volatility.
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ρ median Q5 Q95

classic 0.9 0.9 1.0 ♣

sort 1.0 1.0 1.1 ♣

random 1.4 1.3 1.5 ♣

0.8 1 1.2 1.4 1.6

Distributions of actual daily
volatility in percentage points.

So for this dataset and this time period classic comes out ahead of sort. The aver-

age advantage when doing a paired comparison is about 4bp per day, which sums

to more than half a percentage point when annualised. That is a meaningful re-

duction in risk, though sort’s results are still impressive, given how much simpler

than classic it is. To give some concrete numbers, a typical outcome might be an

annualised 15.2% for classic, 15.8% for sort and 23.6% for a randomly-chosen equal-

weight portfolio with the same cardinality as sort. For comparison, the hdax had

an annualised volatility of 23.5% over this period; the eurostoxx 50 had about

24.8%.
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